41. ro¢nik (2025/2026)
rieSenia krajského kola
kategdria A

Olympiada v informatike
http://oi.sk/

A-11-1 Sizyfos a balvany

Poduloha A

Inverziou nazveme kazda dvojicu (i, 7) takd, ze ¢ < j, ale H[i] > HJj].

Zjavne plati, Ze postupnost je usporiadand (od najmensieho prvku po najvacs) prdave vtedy, ak neobsahuje
ziadnu inverziu. Postupnost dlizky n méze obsahovat nanajvys n(n — 1)/2 inverzii. (Toto nastéva, ak st vietky
prvky navzajom rozne a usporiadané opacne — vtedy kazda dvojica indexov tvori inverziu.)

Kazda vymena, ktorta spravi Sizyfos, znizi pocet inverzii v poli H presne o jednu. V kazdom kole teda klesne
pocet inverzii v poli H. Preto kol, v ktorych Sizyfos nie¢o vymeni, moéze byt dokopy len nanajvys tolko, kolko
bolo na zaciatku v poli H inverzii.

Niekolko avah navyse

Sizyfov postup vZdy na konci vyrobi usporiadané pole. (Ide o tzv. bublinové triedenie, po anglicky bubble
sort.) Ak totiz mame pole, ktoré este nie je usporiadané, musi existovat aspon jeden index 4, pre ktory neplati
H[i — 1] < HJi]. To ale znamend, ze v nasledujicom kole Sizyfos eSte spravi aspoii jednu dalsiu vymenu (ked
pride k najmensiemu takémuto 7). Proces teda méze skoncit len vtedy, ak uz je celé H usporiadané.

Pre pocet kol vieme dokazat aj tesnejsi horny odhad: kol nikdy nebude viac ako n. VSimnime si, ze ked Sizyfos
odchadza doprava z pozicie i tak vzdy plati, Ze na pozicii 7 je najvacsi z balvanov, ktoré dovtedy pocas tohto
kola videl. (Toto vieme dokdzat matematickou indukciou.) To ale znamend, Ze v prvom kole sa uréite najvacs
zo vSetkych balvanov dostane na tUplny koniec, potom v druhom kole sa druhy najvéicsi balvan dostane na
predposledné miesto, a tak dalej — pre kazdé i plati, ze po i-tom kole uz bude najvécsich i prvkov pola H
zaruene na spravnych miestach (a uz sa odtial nikdy nepohnt).

Poduloha B

Prvky fazsie ako w ndm vstup rozdelia na kratsie samostatné tseky. Lahko nahliadneme, ze na kazdom z tychto
usekov Sizyfos postupne spravi presne tie isté akcie, ktoré by spravil, keby existoval len tento tsek balvanov.
Sta¢i ndm teda vstupni postupnost H rozdelit na fazké balvany a tseky lahkych balvanov. Tazké balvany
nechdme na mieste a kazdy usek Tahkych balvanov usporiadame. Toto vieme spravit s casovou zlozitostou
O(nlogn).

Poddiloha C: analyza

Pre jednoduchost predpokladajme, ze uz sme H rovnako ako v podulohe B rozdelili na samostatné tseky —
inymi slovami, predpokladajme, Ze ziaden prvok v nasom H nie je pritazky.

Vsimnime si, ze zatial ¢o balvany, ktoré su pritazké na svoju poziciu, mézu v jednom kole precestovat vela
pozicii smerom doprava, ziaden balvan sa v ziadnom kole nevie posunuf viac ako o jednu poziciu dolava. Ked
totiz spravime vymenu, ktora nejaky balvan X posunie dolava, tak sa nasledne pohneme dalej doprava a teda
sa uz v tomto kole na balvan X nikdy nepozrieme.

Pozrime sa na zaciatocnii postupnost balvanov a na kazdy z nich si napisme dve ¢isla: modrou kriedou ¢islo
pozicie, na ktorej zacina; ¢ervenou kriedou ¢islo pozicie, na ktorej bude, ked Sizyfov postup skondi.

Teraz zoberieme zelent farbu. Pre kazdy balvan si spocitame, o kolko napravo je od svojej spravnej pozicie: od
modrého ¢isla odpocitame cervené a tento vysledok si na balvan zapiseme zelenou farbou. Tento vysledok moze
byt aj zdporny ak je balvan nalavo od svojej spravnej pozicie.

Tvrdime, ze pocet kol, v ktorych sa nieco zmeni, je presne rovny najvacsiemu zelenému cislu.

Dokaz: Je zjavné, ze kol musi byt asporn tolko. Napr. ak najvacsim zelenym c¢islom je 3, znamend to, ze mame
balvan 3 kroky napravo od spravnej pozicie. No a v kazdom kole sa tento balvan posunie nanajvys o jednu
poziciu dolava.

Preco bude kol presne tolko? Tvrdime, ze Uplne vsetky balvany, na ktoré sme napisali kladné zelené ¢islo, sa v
prvom kole pohnti presne o jednu poziciu dolava. Pozrime sa totiz na Iubovolny balvan X, ktory sa momentalne
nachddza napravo od pozicie, na ktorej ma skoncit. Nalavo od X je teraz viac balvanov ako tam ma byt na

strana 1z 8 tloha A-II-1

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategdria A

Olympiada v informatike
http://oi.sk/

vy,

konci, je tam teda aspon jeden balvan, ktory je od X tazsi. Vieme, Ze ked pocas tohto kola Sizyfos pride k
balvanu X, bude nalavo od neho najvacsi z balvanov, ktoré Sizyfos dovtedy videl — ¢ize tam bude balvan tazsi
ako X. To ale znamend, ze s nim nésledne balvan X zarucene vymenime, ¢im ho posunieme o jednu poziciu
dolava.

Ak by sme teda po skonceni kola vsetky ¢isla napisané na kamenoch zmazali a prepocitali, budeme vidiet, Ze sa
nam vsetky kladné zelené ¢isla o jedna zmensili. Ak sa teda maximum zelenych ¢isel v kazdom kole o 1 zmensi,
tak po prave takom pocte kol budu balvany usporiadané.

Musime si vsak este rozmysliet, Zze sa nAm nemoéze staf, aby nam balvan presivany dopravae zhorsil situaciu.

v

Pozrime sa na Tubovolnt vymenu, kde tazsi balvan Y vymenime s Tah$im balvanom X. Po vymene je Y presne
o 1 policko napravo od X. Zaroven vieme, ze cielova pozicia pre Y je aspon o 1 policko napravo od cielovej
pozicie pre X (lebo Y je tazsi ako X). Aktudlne zelené ¢islo pre Y je preto eSte stdle mensie alebo rovné ako
aktudlne zelené ¢islo pre X, a teda neméd ako zvysit hodnotu ich maxima.

Poduloha C: algoritmus

Pre kazdy sivisly tisek balvanov lahsich ako w vytvorime nové pole, ktorého prvkami budi usporiadané dvojice
(H]Ji],). Toto pole klasickym algoritmom v ¢ase O(nlogn) usporiadame. Ked dvojica (H[i],7) skonéi v uspo-
riadanom poli na indexe j, znamend to, ze tento balvan mé na sebe na zaciatku modré ¢islo i a Cervené ¢islo
j. Takto teda vieme efektivne zistit, ktory balvan je najviac napravo od spravnej pozicie, a to nam povie pocet
kol, v ktorych budeme robit vymeny.

Program riesiaci podulohy B aj C:

Listing programu (C++)

#include <algorithm>
#include <iostream>
#include <vector>

using namespace std;

int main() {
int n, w;
cin >> n >> w;
vector<int> H(n);
for (int &h : H) cin >> h;
H.push_back (w+1); // zarazka
vector<int> vystup;
int zac = 0;
int dolava = 0; // o kolko najviac dolava musel nejaky prvok ist
while (zac < n) {
// najdeme usek balvanov, ktorymi vieme hybat
int kon=zac;
while (H[kon] <= w) ++kon;
// usporiadame ich, pricom si zapamatame kde zacinali
vector< pair<int,int> > balvany;
for (int i=zac; i<kon; ++i) balvany.push_back({ H[i], 1 });
sort (balvany.begin(), balvany.end());
// najdeme ten co siel najviac dolava
for (int i=zac; i<kon; ++i) dolava = max(dolava, balvany[i-zac].second - i);
// vyplnime vystup
for (int i=zac; i<kon; ++i) vystup.push_back(balvany[i-zac].first);
vystup.push_back (H[kon]);
zac = kon+l;
}
for (int 1i=0; i<n; ++1i) cout << wvystup[i] << (i+l1] == n ? "\n" : "_");
cout << "pocet_kol: " << (dolava+l) << endl;

A-11-2 Obdiznik

Odportcané ¢itanie pred tymto vzorovym riesenim: https://www.ksp.sk/kucharka/skalarny_a_vektorovy_
sucin/ a pripadne aj https://www.ksp.sk/kucharka/konvexny_obal/.

Uz v zadani sme videli, ako vyriesit pripad, ked st vsetky body na jednej priamke. Mozeme ho oSetrif ako
Specidlny pripad. Vo zvysku riesenia budeme potom predpokladat, ze tento Specidlny pripad nenastéva.

strana 2 z 8 tloha A-II-2

https://www.ksp.sk/kucharka/skalarny_a_vektorovy_sucin/
https://www.ksp.sk/kucharka/skalarny_a_vektorovy_sucin/
https://www.ksp.sk/kucharka/konvexny_obal/

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategdria A

Olympiada v informatike
http://oi.sk/

Hladanie rieSenia si este trochu zjednodusime nasledovnou tvahou: Majme Tubovolny obdlznik, ktory ma na
obvode vsetky zadané body. Pre kazdu jeho stranu zvIast sa pozrime, ¢i obsahuje niektory zo zadanych bodov.
Ak nie, mdzeme nas obdlznik zmensit tak, Ze ttto stranu budeme postvat blizsie ku protilahlej az kym na nejaky
zadany bod nenarazi. Na konci tohto procesu dostaneme obdiznik, ktory nielenze obsahuje vietky zadané body,
ale navyse plati, ze na kazdej jeho strane lezi aspon jeden zo zadanych bodov.

7 vyssie uvedenej vahy vieme, ze ak existuje nejaké riesenie, tak nutne existuje aj rieSenie s touto dodatoc¢nou
vlastnostou. Staé ndm teda hladat takyto obdlznik.

Pomalsie efektivne riesenie

Riesenie tlohy si mézeme vyrazne ulahcit tym, ze ndjdeme konvexny obal vSetkych zadanych bodov.

Ak rieSenie nasej ulohy existuje, ¢o vieme povedat o tomto konvexnom obale?

Na kazdej strane nasho obdiznika méme jeden alebo viac bodov. Tieto ndm na kazdej strane obdlznika uréia
bod alebo tsecku (od prvého po posledny bod na danej strane), ktord zjavne lezi na obvode konvexného obalu.
A kedZe uz ziadne iné body nemame, nas konvexny obal je zaroven konvexnym obalom tychto styroch bodov ¢i
tsediek. Este inymi slovami, ked pre kazdi stranu obdlznika zoberieme len konce jej tsecky (resp. len jeden bod,
ak je jediny), dostaneme préave vSetky vrcholy konvexného obalu. Z toho teda vyplyva, Ze konvexnym obalom
bude nutne nanajvys osemuholnik.

Navyse, kedze bodov méme aspoii desat, na niektorej strane obdlznika ich bude lezat viacero, a teda na nej
bude lezat niektora strana konvexného obalu.

Pévodni tlohu teda mézeme vyriesit nasledovne: Najdeme konvexny obal vSetkych n zadanych bodov. (Toto
vieme spravit v ¢ase O(nlogn).) Ak ma viac ako 8 vrcholov, hladany obdiznik neexistuje. Ak niektory zadany
bod lezi vo vnitri konvexného obalu, obdlZnik tiez neexistuje. Vo zvysnych pripadoch staci vyskdsat nanajvys 8
pripadov: vyskusame vSetky moznosti pre to, ktord strana konvexného obalu lezi na strane obdlznika. Kazdy z
tychto pripadov vieme vyskisat v konstantnom case. Detaily kontroly budd podobné vzorovému rieseniu, ktoré
si popiSeme nizsie.

Vzorové riesSenie

Ulohu vieme vyriesit aj v linedrnom ¢ase a bez explicitnej konstrukcie veobecného konvexného obalu.
Zacneme nasledovnou tivahou: Spomedzi zadanych n bodov zoberme lubovolnych péat. Ak vsetky lezia na obvode
obdlznika, z Dirichletovho principu musia existovat (asporti) dva z nich, ktoré lezia na tej istej strane. Prezrieme
teda vSetky dvojice spomedzi vybranych piatich bodov. Pre kazdud z nich vyriesime jednoduchsiu tlohu: budeme
hladat obdlZnik, ktorj mé navyse ti vlastnost, ze jedna jeho strana lez{ na priamke uréenej tymito dvoma bodmi.
Ak Tubovolnd z tychto tloh bude mat rieSenie, médme aj rieSenie péovodnej tlohy. A naopak, ak Ziadna z tychto
tiloh nebude mat riefenie, budeme mat istotu, ze hladany obdlznik neexistuje.

Moznosti, ktoré takto musime vyskusat, je len desat — jedna pre kazda dvojicu bodov z nasej vybranej pétice.
Ak kazdi moznost odsktSame v linedrnom c¢ase, dostaneme aj celkovo linearne riesenie.

Riesenie nasej jednoduchsej tlohy za¢neme tym, ze zoberieme vsetkych n bodov a zistime, ktoré z nich leii_a) na
Iié)ej priamke. Toto vieme spravit vektorovym stc¢inom: C' lezi na priamke AB ak méa vektorovy suc¢in AB a
AC velkost nula.

Z bodov, ktoré lezia na nasej priamke, nasledne vyberieme ,prvy a posledny“ — teda koncové body najkrajsej
usecky na ktorej vsetky le_ii)a. Toto vieme spravit skalarnym sic¢inom: hladdme najmensiu a najvac¢siu hodnotu
skalarneho st¢inu AB a AC.

Teraz teda mame tsecku, ktorda musi celd lezaf na jednej strane hladaného obdlznika.

Ostatné body (tie, ktoré nelezia na_t>ejt0 priamke) musia vsetky lezat v tej istej polrovine od nej. Toto opét

vieme overit vektorovym siuc¢inom AB a AC: vSetky nenulové sic¢iny musia mat rovnaké znamienko. Ak to nie
je pravda, riesenie neexistuje.

Ostatné body si teraz dalej rozdelime na dve kdpky: tie, ktoré st najdalej od nasej priamky a ostatné. Toto
vieme spravit skaldrnym stc¢inom, nasobit tentokrat budeme AC' a tzv. normalovy vektor nasej priamky — teda
vektor kolmy na AB. Vektor kolmy na (x,y) je napr. (—y,).

Body, ktoré st najdalej, musia vietky lezat na protilahlej strane hladaného obdiznika. Zvysné body (ak este

strana 3 z 8 tloha A-II-2

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategdria A

Olympiada v informatike
http://oi.sk/

nejaké ostali) nazvime boc¢né. Vsetky bo¢né body musia lezat na druhej dvojici rovnobeznych stran. Ostava
ndm uz len overit, & toto vieme dosiahnut — teda ¢ vieme zvysné dve strany obdiznika zvolit tak, aby pokryli
vsetky bocné body.

Uplne vetky body si kolmo premietneme na povodni priamku AB. (Toto vieme opét spravit skalarnym saéi-
nom.) Body leziace priamo na nej a kolmé priemety bodov z druhej rovnobeznej priamky ndm uréuji, odkial
pokial musia miniméalne siahat strany obdlZnika leziace na tychto priamkach. Ziaden z bo¢nych bodov neméze
maf svoj kolmy priemet vo vnutri tohto intervalu. A navyse, aj ,nalavo* aj ,napravo“ od tohto intervalu musi
platit, ze ak tam nejaké bo¢né body mame, tak musia mat vSetky ten isty kolmy priemet — dotycna strana musi
naraz prechadzat vSetkymi z nich.

Staci ndm teda spomedzi vSetkych priemetov vybrat ,prvy a posledny“ a potom overit, ¢i sa kazdy z bo¢nych
bodov premietne na jeden z tychto dvoch extrémov. Ak nie, rieSenie neexistuje, ak ano, existuje a hladany
obdlZnik uz Iahko zostrojime: dva jeho vrcholy budi lezat prave v extrémnych priemetoch a tretf ndjdeme tak,
7e sa z jedného z nich posunieme po normalovom vektore o vzdialenost, v ktorej ma byt protilahla strana.

Listing programu (C++)

#include <bits/stdc++.h>
using namespace std;

// BEGIN geometricke funkcie

typedef complex<double> point;
typedef vector<point> point_seq;

const double EPSILON = le-7;

bool is_negative (double x) { return x < -EPSILON; }
bool is_zero(double x) { return abs(x) <= EPSILON; }
bool is_positive (double x) { return x > EPSILON; }

bool are_equal (const point &A, const point &B) { return is_zero(real
double dot_product (const point &A, const point &B) { return real(A) * real + imag(A) % imag(B); }

B)-real(A)) && is_zero(imag(B)-imag(A)); }

(B)

double cross_product (const point &A, const point &B) { return real(A) * imag(B) - real(B) % imag(A); }
(A)

siz

double size(const point &A) { return sqgrt(real(A) * real(A) + imag(A) * imag)i o}
point normal (const point &smer) { return point(-imag(smer), real (smer)) / e(smer); }

// END geometricke funkcie

int n;
point_seq vstup;

point_seq find_first_and_last (const point_seqg &X) {
point unit = (X[1] - X[0]) / size(X[1] - X[0]);
vector<double> dot_products;
for (auto x:X) dot_products.push_back(dot_product (unit, x-X[0])
double mn *min_element (dot_products.begin(), dot_products.end());
double mx = xmax_element (dot_products.begin(), dot_products.end())
return { X[0] + unit*mn, X[0] + unitxmx };

)i

}

point_seq test_line(const point &A, const point &B) {
// roztriedime vsetky body podla toho, kde lezia vzhladom na priamku
point_seq nalavo, napravo;
for (int i=0; i<n; ++i) {
double vp = cross_product (B-A, vstup[i]-RA);
if (is_positive (vp)) nalavo.push_back (vstup[i]);
if (is_negative (vp)) napravo.push_back (vstup([i]);

if (!'nalavo.empty () && !napravo.empty()) return {};

// osetrime pripad kedy su vsetky na priamke

if (nalavo.empty() && napravo.empty()) {
auto odpoved = find_first_and_last (vstup);
odpoved.push_back (odpoved[0] + normal (odpoved[l]-odpoved[0]));

return odpoved;

}

// najdeme tie co nie su najdalej od priamky —-- musia byt na bokoch

double maxvz = 0;

point_seq mimo = nalavo.empty() ? napravo : nalavo;

for (auto x : mimo) maxvz = max(maxvz, abs(dot_product (x-A, normal (B-A))));

point_seqg boky;
for (auto x : mimo) {

if ('are_equal(maxvz, abs(dot_product (x-A, normal (B-A))))) boky.push_back (x);
}

// premietneme vsetko na nasu priamku

point_seq priemety;

point unit = (B-A) / size(B-A);

for (auto x : vstup) priemety.push_back(A + unitxdot_product (unit, x-A));

strana 4 z 8 tloha A-II-2

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategdria A

Olympiada v informatike
http://oi.sk/

// skontrolujeme, ci su priemety bocnych bodov na koncoch
auto krajne = find first_and_last (priemety);
for (auto x : boky) {
auto pr = A + unitsdot_product (unit, x-A);
if ('are_equal (pr, krajne[0]) && l!are_equal (pr, krajne[l])) return {};

}

// vyrobime tri rohy obdlznika
auto norm = normal (krajne[l]-krajne[0]);

auto candl = krajne([0] + maxvz*norm, cand2 = krajne[0] - maxvz*norm;
if (is_negative (cross_product (B-A, candl-A))) swap(candl, cand2);
auto treti = nalavo.empty() ? cand2 : candl;

return { krajne[0], krajne[l], treti };

}

int main() {
cin >> n;
vstup.resize (n);
for (int i=0; i<n; ++i) { double x, y; cin >> x >> y; vstup[i] = point(x,y); }
for (int a=0; a<5; ++a) for (int b=0; b<a; ++b) {
auto odpoved = test_line(vstupla], vstupl[b]);
if (odpoved.empty()) continue;
for (auto b : odpoved) cout << b << endl;
return 0;

}

cout << "NIE" << endl;

Alternativne vzorové riesenie

Myslienky oboch vyssie uvedenych rieseni vieme skombinovat do linedrneho riesenia nasledovne: Za¢neme hladat
vSeobecny konvexny obal, ale namiesto niektorej z met6d s ¢asovou zlozitostou O(nlogn) pouzijeme algoritmus
»balenia darceka“ (anglicky gift wrapping, resp. Jarvisov algoritmus). Tento algoritmus konvexny obal zostrojuje
postupne a mé ¢asovi zloZitost O(hn), kde h je pocet bodov vysledného konvexného obalu. Tento algoritmus
je vo vseobecnosti pomalsi, kedze v najhorSom pripade je jeho ¢asova zlozitost az kvadratickd od poc¢tu bodov
na vstupe. V nasej ilohe vSak vieme, ze akondhle dostaneme deviaty bod na konvexnom obale, mézeme beh
algoritmu ukoncit a dat negativnu odpoved. Takto v linedrnom c¢ase bud dostaneme odpoved NIE alebo hotovy
konvexny obal nasich bodov.

A-11-3 Tovaren

Pre kazdé i plati, Ze na objednavke i+ 1 zacneme v optimalnom rieseni robif 0 mesiacov, 1 mesiac alebo 2 mesiace
po zaciatku objednavky i. To st teda vzdy tri moznosti. Vyskusanim a skontrolovanim vsetkych moznosti pre
kazdé i dostdavame korektné ale pomalé riesenie s exponencidlnou ¢asovou zlozitostou.

Efektivne rieSenie pre maly pocet zamestnancov

Strucne si nacrtneme jedno mozné riesenie, ktoré je efektivne, ak je pocCet zamestancov p maly.

Vtedy vieme tlohu riesit napr. nasledovnou tvahou: Na zaciatku vysktSame vSetky moznosti pre to, kolko
objednavok spravime prvy mesiac. Zakazdym sa dostaneme do nejakej situdcie, v ktorej sme sa presne rozhodli,
¢o sa deje pocas prvého mesiaca a potrebujeme sa dalej rozhodovat, ¢o robit v druhom a dalsich. Kazda taktto
situaciu vieme popisat dvoma parametrami: poc¢tom x objednavok, ktoré sme eSte nezacali robif, a poctom z
zamestnancov, ktorych mame eSte dostupnych pocas nasledujiiceho mesiaca (ked eSte ostatni{ dordbaju skor
zacaté objednévky).

Pre kazdé x a z si mozeme polozit otdzku, na kolko najmenej mesiacov vieme dokoncit vsSetky zostavajtice
objednavky. Kazdu takito otdzku vieme zodpovedat tak, ze vysktsSame vSetky moznosti, kolko novych objedna-
vok zaCneme v nasledujicom mesiaci. Pre kazdu takato moznost dostaneme o mesiac neskor situdciu rovnakého
typu, len s inymi hodnotami z a z. Odpovedanie na takéto otdzky vieme teda implementovat ako rekurzivnu fun-
kciu. Ked priddme memoizaciu (t.j. pre kazdé parametre funkciu vypocitame len raz a nasledne si zapamétiame
vysledok, ktory nam vysiel), dostaneme ¢asovii zlozitost O(n2p).

Nizsie si najskor ukazeme riesenie za 8 bodov a potom si popiseme, ako ho zlepsit na 10-bodové.

strana 5 z 8 tloha A-II-3

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategdria A

Olympiada v informatike
http://oi.sk/

Riesenie s kubickou c¢asovou zlozitostou

Zacneme tym, ze si predpocitame prefixové sicéty pre polia A a B. Vdaka tomu budeme vediet pre Tubovolny
suvisly tsek objednavok v konstatnom case povedat, kolko by sme v ktory mesiac potrebovali zamestnancov,
keby sme vsetky tieto objednavky robili naraz.

Ozna¢me D[y] minimalny pocet mesiacov, za ktoré vieme splnif prvych y objednavok. Dalej oznacme M [x][y]
miniméalny pocet mesiacov, za ktoré vieme splnit prvych y objednavok, pricom prvych x uz bolo hotovych pred
koncom posledného mesiaca. Ak by sme vedeli urc¢it hodnoty M, mali by sme rieSenie zadanej tlohy. Totiz D[y]
je jednoducho minimom spomedzi vSetkych Mz]|[y] a ndsledne D[n] je hodnota, ktort méme vypocitat ako
odpoved.

Ukazeme si, ako hodnoty M a D pocitat postupne.

Na zac¢iatku mdme M[0][0] = 0 a D[0] = 0: nula objednévok vieme splnit okamzite.

Ked chceme vypocitat konkrétnu hodnotu M|z][y], vieme, Ze pocas posledného mesiaca sme museli robit préve
objednévky s ¢islami z..(y — 1). Ak nemdme dost zamestnancov na to, aby sme tieto objedndvky robili naraz,
bude M|[z][y] = oco: takito situdciu vobec nevieme dosiahnut.

V ostatnych pripadoch M [z][y] uréime rozborom dvoch pripadov: pozrieme sa na to, ¢o sme robili predposledny
mesiac.

Prvou moznostou je, ze sme pracovali len na tych istych y — x objednavkach ako posledny mesiac. Optimélne
riesenie takéhoto typu vyzera teda tak, ze za najmensi pocet mesiacov spravime prvych z objednavok a k tomu
pripo¢itame dva mesiace za nasledujticich y —x objednévok. Dokopy teda budeme potrebovat D|[x]+2 mesiacov.
Druhou moznostou je, ze pred dvoma mesiacmi bolo hotovych len z objednavok, pre nejaké nezname z < =z,
a potom pocas predposledného mesiaca sme naraz dokoncovali objedndvky z..(x — 1) a zad¢inali objednavky
z..(y — 1). Ked pozndme konkrétne z, vieme povedat, Ze ndm to celé bude trvat M|z][z] + 1 mesiacov.
Hodnotu M|z][y] zistime tak, Ze si spomedzi tychto moznosti vyberieme ti najkratsie trvajicu. Zoberieme teda
minimum spomedzi hodnoty D[x] 4+ 2 a vSetkych hodnot M|[z][xz] 4+ 1 takych, Ze vieme pocas predposledného
mesiaca naraz robif na vsetkych potrebnych objednavkach.

Hodnoty M|z][y] budeme poéitat v cykle cez vSetky = a vntitri toho cyklu v cykle cez vetky y > x. Néasledne
vzdy, ked dopocitame vSetky hodnoty M|[?][y], uréime z nich hodnotu D[y].

Dokopy potrebujeme vypoéitat O(n?) réznych hodnot v poli M. Vipodet kazdej z nich ndm bude trvat nanajvys
linedrne dlho, lebo potrebujeme vyskisat O(n) réznych hodnot z. Celkovd casovd zlozitost tohto rieSenia bude
teda O(n?).

Riesenie s kvadratickou c¢asovou zlozitostou

Vsimnime si, ze vSetky vypoéty hodndét M[x][y] pre rézne y si velmi podobné: vidy zaéneme s tou istou
hodnotou D[z] 4+ 2 a potom prezerdme hodnoty M z][x] pre pripustné z. Jediné, ¢o sa v zdvislosti od y meni,
je, ktoré hodnoty sa pripustné. Presnejsie, ¢im mensie y si zvolime, tym menej zamestnancov potrebujeme na
poslednt sadu objednavok, a tym viac ich mézeme pouzit na predposledni — teda tym vécsie z eSte moze byt
pripustné.

Kubické riesenie teraz zlepsime na kvadratické nasledovne: Podobne ako v predchadzajicom rieseni budeme
pre pevne zvolené x postupne pocitat vSetky hodnoty M [z][y]. Tentokrat to vSak spravime v opa¢nom smere:
zacneme s y = n a postupne budeme y znizovat az po y = x 4+ 1. Ked postupne prechadzame cez vsetky y v
klesajiicom poradi, tak v kazdom kroku mmnozina pripustnych z bud ostane rovnaka, alebo sa zvacsi. Namiesto
toho, aby sme pre kazdé y znova prechddzali cez vsetky z, ndm stac¢i zobrat predchadzajicu hodnotu a ak nam
pribudli nejaké nové pripustné hodnoty z, prejst tie a prezriet, ¢i ndm nedaji nové lepsie riesenie.

Pre kazdé konkrétne x takto vypocitame vSetky hodnoty M|z][y] v celkovom case O(n): kazdé pripustné y aj
kazdé pripustné z spracujeme préave raz. Dokopy teda dostdvame ¢asovi zlozitost O(n?).

Listing programu (C++)

#include <iostream>
#include <vector>
using namespace std;

const int NEKONECNO = 987654321;

strana 6 z 8 tloha A-II-3

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategdria A

Olympiada v informatike
http://oi.sk/

vector<int> prefix_sums (const vector<int> &X) {
vector<int> PX(1l, 0);
for (int x : X) {
int next=PX.back () + x;
PX.push_back (next) ;
}
return PX;

}

int main() {
int p, n;
cin >> p >> n;
vector<int> A(n), B(n);
for (int 1=0; i<n; ++i) cin >> A[i] >> B[1];
vector<int> PA = prefix_sums(A), PB = prefix_sums (B);

vector<int> D(n+1, NEKONECNO) ;
D[0] = 0;
vector<vector<int> > M(n+l, vector<int>(n+l, NEKONECNO)) ;

for (int x=0; x<n; ++x) {
int best = D[x] + 2, z = x;
for (int y=n; y>x; --y) {
// vypocet M[x][y]
// skontrolujeme, ci vieme naraz robit joby x.. (y-1)

int treba_minuly = PA[y] - PA[x], treba_tento = PB[y] - PB[x];

if (treba_minuly > p || treba_tento > p) continue;

// ak ano, zistime, ci vieme predchadzajuci mesiac mensie z ako doteraz
while (z > 0 && treba_minuly + PB[x] - PB[z-1] <= p) {

——z;
best = min(best, M[z] [x]+1);
M[x] [y] = best;
}
// uz vieme D[x+1]
for (int i=0; i<=x; ++i) D[x+1l] = min(D[x+1], M[i][x+1]);
}

cout << D[n] << endl;

A-11-4 Nechaj to na solver Il

Poduloha A

Rovnako ako v domacom kole stac¢i mat jednu bindrnu premennt pre kazdy projekt. Hodnota tejto premennej
je 0 ak projekt nepodporime, resp. 1 ak ano. Slabu zavislost projektu = na projektoch yi, y2, y3 namodelujeme
jednoducho ako nerovnost z < y; + y2 + y3. Zvysok riesenia ostava rovnaky ako v domacom kole.

Listing programu (Python)

import pulp

def hodnota(vyraz): return int (round(pulp.value (vyraz))

e, n = [int(_) for _ in input().split()]

S = [int(_) for _ in input().split()]

V = [int(_) for _ in input().split ()]

z = int (input())

D= [[int(_)-1 for _ in input().split()] for __ in range(z)] # -1 lebo interne cislujeme od 0
problem pulp.LpProblem(’ Investicie’, pulp.LpMaximize)

project = [pulp.LpVariable (f’project{i}’, cat='Binary’) for i in range(n)]
problem += e + sum(project[i] % (V[i] - S[i]) for i in range(n))
problem += sum(project[i] = S[i] for i in range(n)) <= e
for soft_dependency in D:
problem += project[soft_dependency[0]] <= sum(project[d] for d in soft_dependency[l:])

status = problem.solve (

assert pulp.LpStatus[status] == ’'Optimal’
print (hodnota(problem.objective))
for x in project: print(x.name, ’'=’, hodnota(x))

Poduloha B

strana 7 z 8 tloha A-I1-4

41. ro¢nik (2025/2026)
rieSenia krajského kola
kategdria A

Olympiada v informatike
http://oi.sk/

Pre kazdy kopec ¢ budeme mat tri bindrne premenné z; 1, 2; 2 a 2; 3. Ich hodnoty ndm budt hovorit, ¢i na tomto
kopci postavit prvi, druhi a tretiu zjazdovku.

V praxi sa navyse oplati k tymto premennym rovno pridat aj nerovnosti z;1 > z;2 > 2; 3. Tieto nerovnosti
vieme ¢itat tak, ze druhi zjazdovku mézeme otvorit len ak sme otvorili aj prvi, a tak dalej. (Solver potom
nemusi zbytocne prezeraf logicky ekvivalentné vetvy, ako napr. moznost otvorit len tretiu zjazdovku namiesto
len prvej zjazdovky.)

Dalej budeme mat pre kazdu zjazdovku aj celoéiselni premennt d; ; udavajicu jej presni dizku: nula ak ju
nepostavime, resp. ¢islo od ¢; po u; ak ano.

Celkovéa di7zka zjazdoviek bude jednoducho stétom vietkych d; ;. Tento stcet sa mé presne rovnat danému d.
Celkova cena postavenia zjazdoviek bude stic¢tom sicinov ¢;-d; ; cez vSetky ¢ a j. Tiito cenu chceme minimalizovat,
to teda bude cielom nasho ILP.

Chyba nam este najdolezitejsia ¢ast nasho programu: podmienky, ktoré zabezpecia, Ze hodnoty d; ; budi mat
vyssie uvedeny rozsah. Kliucovou castou riesenia tlohy bolo prist na to, ako vieme toto dosiahnut len pomocou
linedrnych nerovnosti.

Vsimnime si hodnoty ¢; - z; ; a u; - 2; ;. V oboch pripadoch ide o vyraz tvaru konStanta krat premennd, ¢o
je dovoleny tvar. Ak do premennej z; ; priradime nulu (teda ak sa rozhodneme tito konkrétnu zjazdovku
nepostavit), budi mat oba vyssie uvedené vyrazy hodnotu 0. Naopak, ak bude z; ; = 1, budid mat tieto dva
vyrazy hodnoty ¢; a u;. Do nasho ILP preto priddme nasledovné nerovnosti: ¢; - z; ; < d; ; a dij < uy - 2;5. Tie
v oboch pripadoch uréia spravny rozsah pre dizku prislusnej zjazdovky.

Listing programu (Python)

import pulp
def hodnota (vyraz): return int (round(pulp.value (vyraz))

k = int (input ())
L, u, ¢ =11, [], []
for 1 in range (k) :
1, u, ¢ = [int(_) for _ in input().split()]
L.append (1)
U.append (u)
C.append (c)
d = int (input ())

problem = pulp.LpProblem(’Zjazdovky’, pulp.LpMinimize)
postav = [[pulp.LpVariable (f’postav_{i+1}_{j+1}’, cat='Binary’) for j in range(3)] for i in range (k)]
dlzka = [[pulp.LpVariable(f’dlzka_{i+1}_{J+1}’, cat='"Integer’) for Jj in range(3)] for i in range (k)]

ciel ktory minimalizujeme: celkova cena stavby
problem += sum(C[i] * dlzka[i][Jj] for i in range(k) for J in range(3))

optimalizacia: obmedzenia pre stavanie
for i in range (k) :
problem += postav[i][1]
problem += postav([i][2]

<= postav[i] [0]
<= postav[i][1]
podmienky pre spravny rozsah dlzok
for 1 in range (k) :
for j in range(3):
problem += dlzka[i][j] >= L[i] * postav[i][7]]
problem += dlzka[i][j] <= U[i] * postav[i][7]]

podmienka pre celkovu dlzku
problem += == sum(dlzka[i][J] for i in range(k) for j in range(3))

status = problem.solve(
assert pulp.LpStatus[status] == ’Optimal’, ’Uloha_nema_riesenie.’
print (hodnota(problem.objective))
for row in dlzka:
for x in row:
if hodnota (x) :
print (x.name, ’'=’, hodnota(x))

STYRIDSIATY PRVY ROCNIK OLYMPIADY V INFORMATIKE

Priprava tloh: Michal Anderle, Michal Forisek, Sebastian Hajdu
Recenzia: Michal Forisek
Slovenska komisia Olympiddy v informatike
Vydal: NIVAM — Nérodny institut vzdeldvania a mladeze, Bratislava 2026

strana 8 z 8 tloha A-I1-4

