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Preface

Hello, dear reader!

This booklet contains all tasks and solution writeups from the first ever Visegrad Programming
Contest Preparation Camp (VPCPC). The VPCPC is continuing and extending a long tradition of
international algorithmic preparation camps in central Europe. The predecessor of this camp was the
Czech-Polish-Slovak Preparation Camp (CPSPC). This camp has been organized once per year by one
of the three participating countries. The first ever CPSPC took place in the summer of 1999 in Belušské
Slatiny, Slovakia. After starting that tradition, we are now hoping that we were able to start a new, even
better one. We would love to see and attend many more VPCPCs in the years to come!

Anyway, let’s get back to the tasks. The participants invited to the camp are secondary school
students who are among the best in algorithmic problem solving. Most of them are future participants
in the International Olympiad in Informatics (IOI) and similar contests. The 20 tasks used at VPCPC
2014 reflect the skill level of these contestants. (Read: most of the tasks are quite difficult.)

The test data for all the tasks is available at https://github.com/trojsten/vpcpc. All the materials
from the camp are released under the Creative Commons Attribution-ShareAlike (CC BY-SA) 3.0 license.

Michal Forǐsek
Bratislava, July 2014
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Results

Below are the results of VPCPC 2014. Each problem was worth 100 points. Hence, the theoretical
maximum was 2000 points: contestants could score at most 300 points on national days and at most 400
points on mixed days (day 3 and day 6). Note that contestant names are printed according to national
customs – i.e., the family name is printed first for Hungarian contestants and last for contestants from
the other three countries.

rank contestant (country) total day 1 day 2 day 3 day 4 day 5 day 6
1. Eduard Batmendijn (SK) 1709.50 280.00 259.50 340.00 300.00 300.00 230.00
2. Jaros law Kwiecień (PL) 1456.37 260.00 196.37 300.00 200.00 200.00 300.00
3. Stanis law Barzowski (PL) 1337.21 200.00 184.21 240.00 300.00 180.00 233.00
4. Micha l Glapa (PL) 1284.98 200.00 194.98 200.00 200.00 200.00 290.00
5. Maciej Holubowicz (PL) 1152.02 280.00 164.52 200.00 140.00 167.50 200.00
6. Jan-Sebastian Fab́ık (CZ) 1013.64 200.00 164.14 150.00 156.50 180.00 163.00
7. Martin Raszyk (CZ) 976.50 240.00 120.00 43.00 173.00 237.50 163.00
8. Jan Tabaszewski (PL) 969.09 0.00 153.59 173.00 200.00 212.50 230.00
9. Albert Citko (PL) 939.20 40.00 151.70 200.00 200.00 237.50 110.00

10. Michal Korbela (SK) 933.76 140.00 148.26 100.00 240.00 142.50 163.00
11. Weisz Ambrus (HU) 917.59 160.00 152.59 83.00 249.50 142.50 130.00
12. Erdős Márton (HU) 715.04 60.00 129.54 133.00 200.00 82.50 110.00
13. Somogyvári Kristóf (HU) 684.40 140.00 146.90 175.00 40.00 82.50 100.00
14. Pavel Madaj (SK) 584.96 140.00 134.46 140.00 20.00 87.50 63.00
15. Ondřej Hübsch (CZ) 575.69 180.00 143.19 33.00 56.50 100.00 63.00
16. Michal Sládeček (SK) 568.49 120.00 46.99 63.00 73.00 102.50 163.00
17. Székely Szilveszter (HU) 565.80 80.00 80.30 50.00 143.00 112.50 100.00
18. Mernyei Péter (HU) 557.24 100.00 81.74 50.00 153.00 52.50 120.00

19. Zarándy Álmos (HU) 549.49 140.00 46.99 50.00 120.00 142.50 50.00
20. Peter Ralbovský (SK) 503.57 100.00 102.57 73.00 0.00 65.00 163.00
21. Václav Rozhoň (CZ) 479.75 140.00 126.75 33.00 40.00 110.00 30.00
22. Matěj Konečný (CZ) 436.00 60.00 120.00 0.00 173.00 20.00 63.00
23. Dominik Smrž (CZ) 402.50 140.00 20.00 10.00 120.00 112.50 0.00
24. Alan Marko (SK) 339.90 0.00 106.90 33.00 0.00 70.00 130.00
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Statistics

The following table contains some statistics for the individual tasks. The columns of the table contain
the following information:

• The column “full” is the number of contestants who achieved a perfect score (i.e., 100 points).

• The column “mean” is the arithmetic mean (average) of all scores.

• The column “median” is the median score – more precisely, the average of the scores of the 12th
best and the 13th best solver of that task.

The task day2-cutting was an open-data task with relative scoring. The best score awarded to a
contestant was 84.21.

task id full mean median
day1-hyperways 3 33.33 40.00
day1-malloc 8 52.50 40.00
day1-shades 5 55.83 60.00
day2-buslines 18 84.16 100.00
day2-cutting 0 24.84 16.95
day2-investigation 2 23.33 20.00
day3-newtree 1 20.00 0.00
day3-rubik 4 21.88 0.00
day3-universities 7 41.54 33.00
day3-wall 8 36.25 10.00
day4-critical 8 52.50 40.00
day4-networks 4 29.06 8.25
day4-nextperm 15 64.16 100.00
day5-game 8 48.75 30.00
day5-posters 1 22.92 12.50
day5-sorting 12 67.50 85.00
day6-mission 4 29.04 33.00
day6-newspaper 3 36.25 30.00
day6-slalom 0 0.00 0.00
day6-tickets 17 75.00 100.00
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Hyperways

task: hyperways input file: stdin output file: stdout
points: 100 time limit: 3000 ms memory limit: 1 GB

The intergalactic company Oods&co is going to build a network of hyperways1 that will connect the
planets of our galaxy. They have already prepared a construction plan, i.e., a sequential order of building
the hyperways. Each hyperway will be a bidirectional corridor that will connect two (not necessarily
distinct) planets.

Task

A hyperway is safe if it is not the only hyperway that connects (directly or indirectly) some pair
of planets. In other words, a hyperway H is unsafe if there are two planets A and B such that when
traveling from A to B we have to use H. (Alternately, note that safe hyperways are the ones that lie on
some cycle.)

You will be given the order in which hyperways will be constructed. After each construction there may
be some hyperways which have just become safe. (Including, possibly but not necessarily, the hyperway
that was just built.) Count those hyperways.

Note that if a hyperway is already safe, it will remain safe for the rest of the construction.

Input

On the first line of input are two integers n and m: n is the number of planets in the plan, m is the
number of hyperways. The planets are numbered 1 . . .n.

Each of next m lines consists of two space separated integers – the ids of planets next hyperway
will join. There can be a hyperway connecting a planet with itself. There can be a multiple hyperways
between two planets.

In all test cases, n ≤ 106 and m ≤ 2 · 106.
In 40% of test cases, n ≤ 1000 and m ≤ 2000.

Output

For each hyperway in the input, output a single line with a single integer: the number of hyperways
that just became safe.

Samples

input

5 8

1 2

3 3

4 5

2 3

4 5

3 4

4 1

5 2

output

0

1

0

0

2

0

4

1

1hyperspace highways, also called hyhi
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Dynamic memory allocation

task: malloc input file: stdin output file: stdout
points: 100 time limit: 1200 ms memory limit: 1 GB

Kamila is once again devising a new amazing programming language that will be superior to all other
languages in every aspect. Writing code will become even simpler than ABC, so little children will learn
how to program before they will know how to write comments. This is not a bug,2 as comments are
absolutely unnecessary in Kamila’s dreamt up language: Due to its intuitive syntax, the purpose of any
block of code is immediately crystally clear. Also, the compiler will bake you a cake for your birthday.

There is still a handful of outstanding issues though. For example, the language constructs for
memory management do not work yet. Kamila prepared a precise specification of the memory allocation
and freeing procedures, but she did not find enough time to implement them. Help her, and achieve
instant fame for contributing to such an important project!

Task

The available memory is an array of n bytes numbered 0 through n − 1. At the beginning, all the
bytes are free (i.e., not allocated). Then the memory management system allocates and frees the bytes
according to a sequence of queries.

An allocation query is specified by an integer `. The system finds a block of ` consecutive free bytes,
allocates them, and returns the position of the first byte in this block. If there are multiple such blocks
available, the one starting at the position with the smallest number is chosen. If there is no such block
available, the query is rejected and the system returns −1.

A freeing query is specified by two integers x and `. The system marks the block of ` consecutive
bytes starting at the position x as free, and returns the number of actually freed bytes (i.e., the number
of bytes in this block that were not free before the query).

Input

The first line of the input consists of two integers n and q – the number of bytes in the available
memory and the number of queries (1 ≤ n, q ≤ 3 · 105).

Each of the following q lines describes a query. The first integer in a line determines the type of the
query: 1 is for allocation and 2 for freeing. A line with an allocation query then continues with one
additional integer ` (1 ≤ ` ≤ n). Similarly, a line with a freeing query continues with two integers x and
` (0 ≤ x ≤ n− 1, 1 ≤ ` ≤ n− x).

Output

For every query in the given sequence, output one line with the value returned by the system.

Samples

input

5 4

1 3

1 3

2 1 3

1 4

output

0

-1

2

1

2By the way, it will be impossible to introduce bugs into a program – Kamila’s brilliant compiler will optimize them out.
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Shades of the town

task: shades input file: stdin output file: stdout
points: 100 time limit: 1000 ms memory limit: 1 GB

A long long time ago in a galaxy far away, there was a town. Well, we assume that it was a town. But
it disappeared and almost nothing was left. Just a shade. A dark, cold shade. A shade which doesn’t
move. The shade of destiny.

We assume that all the buildings in the town stood in a single line and were equally spaced. All
buildings had the same width, only their heights differed. The buildings are now gone, only their shadows
remain. Note that the lengths of shadows don’t have to be the same as the heights of the original buildings:
they can all be scaled by the same constant factor.

We are interested in the architecture of the culture that occupied the planet. We have multiple
sequences of building heights (called “patterns”). For each such pattern, we would like to find all possible
occurrences in the original sequence of buildings.

Task

You are given a sequence of positive integers: the lenghts of the preserved shadows. You are also given
several queries. In each query we give you one pattern. The pattern is a sequence of positive integers: the
heights of some buildings. We say that a pattern occurs in the shade if there is a contiguous subsequence
of the shadows that is the same as the pattern, scaled by a positive real factor.

For each pattern, find the number of its occurrences in the original sequence. (The occurrences are
allowed to overlap.)

Input

On the first line of input is a single integer n – the number of paterns.
Each of next n lines describes one pattern. It starts with an integer li – the patern length. Then li

space separated positive integers follow.
The last line describes the shade. It starts with an integer m – the shade length. Then m space

separated positive integers follow.

Constraints:

• 1 ≤ m ≤ 3 · 105

• 1 ≤ li
•
∑n

i=1 li ≤ m
• All heights and lengths are between 1 and 10 000, inclusive.

In 40% of testcases we have m ≤ 1000.

Output

Output a single line with a single integer – the total number of occurrences of all patterns in the
shade.

Samples
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input

4

1 47

2 21 42

2 34 17

3 1 2 1

7 3 6 3 6 12 6 3

output

15

The first patterns can be scaled to any height and
so it occurs 7 times. The second and the third
pattern each occur 3 times. The fourth pattern
occurs 2 times.
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Bus lines

task: buslines input file: stdin output file: stdout
points: 100 time limit: 3000 ms memory limit: 1 GB

In the Czech city called Kocourkov they have a spectacular public transportation system. It consists
of N bus stops and N − 1 bidirectional roads, each road connecting two bus stops. It is possible to get
from each bus stop to every other using a sequence of roads.

Every morning, for each pair of distinct bus stops a and b there is exactly one bus that starts at a
and goes to b (along the only direct path). That is, there are a total of N(N − 1) buses. Each bus stops
at all bus stops it visits along the way.

At every bus stop there must be a timetable listing all the buses that stop there (including buses that
start or end their journey there). You are now wondering how many buses are listed on each timetable.

Task

You are given the description of the traffic system in Kocourkov. For every bus stop in the city
calculate the number of buses that stop on that particular stop.

Input

First line contains an integer N , the number of bus stops in the city (stops are numbered from 1 to
N). The following N − 1 lines describe the roads in the city. Each line contains two different integers
1 ≤ x, y ≤ N meaning that there is a road connecting bus stops x and y.

It holds 1 ≤ N ≤ 106.
In the 20% of testcases N ≤ 100.
In the 40% of testcases N ≤ 1000.

Output

The output consists of N lines. The i-th line should contain a signle integer, the number of buses
that stop on the i-th bus stop.

Samples

input

6

1 2

2 3

3 4

4 5

5 6

output

10

18

22

22

18

10

input

5

4 5

2 1

3 2

2 5

output

8

18

8

8

14
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Cutting of a birthday cake

task: cutting input file: text files output file: text files

points: 100 time limit: - memory limit: -

Mimino is celebrating his birthday! Although an incredible programmer, he is only N years old.
Kamila’s compiler (remember from yesterday?) cooked a huge3 chocolate cake for his birthday party and
placed N candles on the top of it. Mimino and his friends are all getting really hungry and want to cut
the cake. They want to cut the cake with the straight cuts, such that there will be at most one candle
on each slice.

Mimino is now wondering, what is the minimum number of cuts needed to satisfy above constraints.

Task

Having a plane and some points in it, give a set of lines that separate the plane into subplanes so that
each subplane can contain at most 1 point. The set should be as small as possible.

Point coordinates are all integers. Lines are given by two different points (with integer coordinates).
Lines have a direction from their first point to their second point; this is used to determine that when a
line intersects an input point, the input point is considered to be on the right side of the line.

Lines can only be horizontal, vertical or diagonal.

Input

The first line contains a single integer N , the number of points. Following N lines describe the points.
The (i+ 1)-th line contains a pair of space separated integer coordinates x and y of the i-th point.

Output

The first line should contain L, the number of lines. Following L lines describe the lines.
The (i + 1)-th line contains four space separated integers X1, Y1, X2, Y2. Points (X1, Y1) and (X2,

Y2) must be different, the line goes through both of them. At least one of the following conditions must
held:

• X1 = X2 (vertical line)

• Y1 = Y2 (horizontal line)

• X1 −X2 = Y1 − Y2

• X1 −X2 = Y2 − Y1

Your solution should output at most 10 000 lines and the absolute value of all coordinates must be
less than or equal to 1 000 000.

Scoring

This is an open data problem. You can download all 10 testcases from the submission system. You
are only required to submit your output files.

If your output doesn’t follow the output format or doesn’t separate the points correctly, your score
will be zero for the testcase.

3The cake is so big, it can be represented as an infinite plane.
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Otherwise, your score for the testcase is equal to 10 ·
(

1−
√

1− Lmin/L
)

, where L is the number of

lines in your output and Lmin is the best submission made by any contestant during the contest. Note
that this score is calculated after the contest.

Samples

input

4

3 1

4 5

6 6

8 4

output

2

3 2 8 7

2 8 8 2
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Investigation

task: investigation input file: stdin output file: stdout
points: 100 time limit: 2500 ms memory limit: 1 GB

There was a robbery in a city of Bytelandia. The thief successfully escaped and hid somewhere in the
city. You are investigating this crime. Your goal is to find and arrest the thief.

The city consists of N houses and N − 1 roads, connecting some of the houses in such a way, that
there exists a unique path between any two houses (i.e. the city forms a tree structure). The thief is
hiding in one of the houses.

To locate the thief, you can choose a house h and search it. If it was the house where the thief was
hiding, you arrest him. Otherwise you interrogate the inhabitants of the house and they provide you with
the following information: “If you picture the city as a rooted tree, with house h as its root and houses
c1, c2 . . . cm as the children of h, then the thief is hiding in one of the houses of the subtree rooted at ci
(for some i, 1 ≤ i ≤ m).”

You have to keep searching the houses until you find and arrest the thief. You can suppose that the
thief stays hidden in the same house during the whole investigation process (i.e. he doesn’t change the
location).

Obviously, the order in which you search the houses matters, because even if you don’t find the thief
in a house, with the provided piece of information you can highly reduce the number of possible houses
where the thief can be hiding. So you need to come up with an optimal strategy that minimizes the
number of searched houses in the worst possible scenario.

Task

You are given the description of the city. Come up with a strategy for searching the houses, that
minimizes the number of houses you need to search in the worst possible scenario.

Input

First line contains a single integer N , the number of houses in the city (houses are numbered from 0
to N − 1).

Second line contains N − 1 space separated integers, v1v2 . . . vN−1. Integer vi (1 ≤ i ≤ N − 1) means
there is a road connecting the houses with numbers vi and i (vi < i).

It holds 2 ≤ N ≤ 105.
In the 20% of testcases N ≤ 10.
In the 40% of testcases N ≤ 20.
In the 60% of testcases N ≤ 1000.

Output

Output exactly one integer, the number of houses you need to search in the worst possible scenario,
when searching using the optimal strategy.

Samples

input

5

0 1 1 1

The city looks like a star, with house 1 in the mid-
dle.

output

2

First search the house 1. If the thief wasn’t there,
after interrogation you will know in which house is
the thief hiding.
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input

8

0 1 2 1 3 5 6

output

3
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New Tree

task: newtree input file: stdin output file: stdout
points: 100 time limit: 200 ms memory limit: 1 GB

A new tree has been planted in the city park and the gardener wants to protect it. To do so, he
creates a protected area around the new tree by selecting three of the old trees, and encircling them with
a band. The new tree must be strictly inside the protected area but no other tree is allowed to be there.
The gardener has already selected one of the old trees. Help him find the other two.

Task

The task is to compute two old trees that form a valid protected area together with the already
selected old tree.

Input

The first line of the input contains two integers, N and A. N (3 ≤ N ≤ 100000) is the number of
old trees and A (1 ≤ A ≤ N) is the identifier of the preselected old tree. The trees are identified by
the numbers 1, . . . , N . The second line contains two integers x and y, the x-and y-coordinates of the
new tree. Each of the next N lines contains two integers x and y, (−1000000 ≤ x, y ≤ 1000000) the
coordinates of an old tree.

In 40% of the testcases N ≤ 5000 also holds.

Output

The first line of the output must contain two integers B and C separated by a single space, where B
and C are old tree identifiers with the following property: if A is the identifier of the preselected old tree,
then the triangle with nodes A, B and C (in counterclockwise order) forms a valid protected area. That
is, there are no trees on the sides of the triangle other than A, B and C, and the only tree strictly inside
the triangle is the new tree. If there is no solution then the output must be 0 0. If there are multiple
solutions, your program should output only one; it does not matter which one.

Samples

input

7 1

9 3

3 1

8 7

9 5

11 5

12 4

9 1

13 6

output

6 4
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Cubic Art

task: rubik input file: stdin output file: stdout
points: 100 time limit: 1200 ms memory limit: 1 GB

Modern art is unpredictable. When Bob was tidying his room he found his old Rubik’s cube. Then
the moment came. He closed his eyes, listened to his inner voice, made a few moves (up to 65 000) and
the masterpiece was nearly complete. But the final state was not to his liking. He realized he did some
of the moves incorrectly. If only he could go back in time and change them!

All he now needs to do is a few changes (again, up to 65 000 of them). Each of the changes consists
of replacing one move with some other move. Bob would like to see what each change does. But it is
annoying to repeat the entire sequence of moves again and again.

Task

You are given the initial state of Bob’s Rubik’s cube. (The cube is not necessarily solved in its initial
state.) You are also given the original sequence of moves Bob performed.

Finally, you are given a sequence of changes. Each change is of the form “change the k-th move into
this new move”. For each change, output the state of the cube at the end of the entire sequence of moves.

Note that the changes are permanent – for example, the second change should be applied to the
sequence of moves with the first change, not to the original sequence.

Cube’s I/O

Let the cube’s colors be A,B,C,D,E,F . When you are playing with the cube, the middle squares of
its faces do not move. Therefore, we will always use A as the color of the center of the top face, B, C,
D, E as the centers of the side faces (in order), and F as the center of the bottom face. The surface of
the cube can then be unfolded into the following form:
???

?A?

???

????????????

?B??C??D??E?

????????????

???

?F?

???

Input

First 9 lines of the input contain the description of the starting state of the cube. The description is
given in the above form. You may assume that the centers of the six faces are labeled as shown above.4

Then there is a line with two integers n and m: n is the number of moves and m is number of
subsequent changes.

Next n lines are describing Bob’s original moves. They have the form “Ci di”, where Ci is the color of
the center of the rotated side and di is −1 in case of a clockwise move and 1 in case of a counterclockwise
move.

4You may also assume that the starting state is a valid configuration that can be obtained from the solved state. However,
this is actually irrelevant in our problem.
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The last m lines describe the changes, in order. Each one has the form “aj Cj dj”, where aj is the
(1-based) index of the move that is being replaced and Cj dj describes the new move.

Constraints

In all test cases, n,m ≤ 65 000. In 50% of testcases n,m ≤ 1000.
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Output

Let Si be the sequence of moves obtained from the initial sequence by applying the first i changes.
For each i between 1 and m, inclusive, output 9 lines: the final state of the cube obtained by starting

in the initial configuration and performing the sequence of moves Si. Use the same format as in the
input.

Samples

input

AAA

AAA

AAA

BBBCCCDDDEEE

BBBCCCDDDEEE

BBBCCCDDDEEE

FFF

FFF

FFF

8 4

E 1

E -1

F 1

F -1

B 1

B -1

E 1

E -1

8 C -1

2 C -1

6 D -1

4 A -1

The original moves cancel each other out. At the
end of the original sequence of moves, the cube is
back in its initial state.
After we make the four changes described in the
input, we obtain a sequence of moves that flips
everything except for the centers of all sides.

output

BAB

BAB

BAB

FBFCCCADAEEE

FBFCCCADAEEE

FBFCCCADAEEE

DFD

DFD

DFD

FAF

FAF

FAF

DBDCCCBDBEEE

DBDCCCBDBEEE

DBDCCCBDBEEE

AFA

AFA

AFA

FCF

BAB

FCF

EFEDFDCACBAB

DBDCCCBDBEEE

EFEDFDCACBAB

AEA

DFD

AEA

CCC

CAC

CCC

FFFDDDAAABBB

FBFDCDADABEB

FFFDDDAAABBB

EEE

EFE

EEE
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Universities

task: universities input file: stdin output file: stdout
points: 100 time limit: 1000 ms memory limit: 1 GB

You have just graduated from the high school and are looking for a university to enroll in. There are
N magic universities in Bytelandia. Each university teaches either black magic or white magic. There
are N − 1 bidirectional roads between the universities, each road connecting two different universities.
Universities are connected in such a way, that there exists a unique path between any two universities.

You plan to visit some of the universities. Each university has a happiness factor, by which your
overall happiness increases when you visit the university. Note that if the happiness factor is negative,
your overall happiness decreases.

To plan your trip, you choose two different universities, the departure and the destination university.
You will visit all the universities on the path between the departure and destination universities, both of
them including. To keep things in balance, you must visit the same number of white magic universities
as black magic universities.

You are now wondering, what is the optimal trip that maximizes the happiness of the trip, i.e. sum
of the happiness factors of the universities you visit.

Task

You are given the description of universities and connections between them. Find the optimal trip
around the universities, in which you visit the same number of black and white magic universities and
the happiness of the trip is as large as possible.

Input

Input consists of four lines.
First line contains a single integer N (2 ≤ N ≤ 105), number of universities (universities are numbered

from 1 to N).
Second line contains a string of length N , consisting of “B” and “W” characters. If the i-th character

is “B”, then the i-th university is teaching black magic. If the i-th character is “W”, then the i-th
university is teaching white magic. There will be at least one university teaching white magic and at
least one university teaching black magic.

Third line contains N space-separated integers h1h2 . . . hN (−105 ≤ hi ≤ 105). Integer hi is the
happiness factor of the i-th university.

Fourth line contains N − 1 space-separated integers v1v2 . . . vN−1. Integer vi means there is a road
connecting the universities with numbers vi and (i+ 1) (1 ≤ vi ≤ i).

Output

Output exactly one integer, maximum overall happiness of the trip, in which you visit the same
number of black and white magic universities.

Samples

input

6

BWBBBW

6 0 3 -2 100 5

1 2 2 4 4

output

9

In optimal trip you visit the universities 1,2,4,6.
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input

3

WBW

1 -10 5

1 2

output

-5

Because you have to visit some universities, some-
times the answer can be negative.
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Wall

task: wall input file: stdin output file: stdout
points: 100 time limit: 1000 ms memory limit: 1 GB

Mirek is a conservator. His job is to maintain monuments, keeping them in good condition. Mirek’s
today task is to repair the defense wall of an old fortress. The wall is about to fall to pieces, so he must
hurry. He searched through the Internet and found a robot designed to repair such walls extremely fast.
After purchasing the robot, he tried to make the optimal repairment plan, but this was way too difficult
for him.

The wall can be considered as a straight line. Mirek wrote down all points on the wall, which require
repairing. For each point he knows, what would be the cost Ci of repairing it, and a coefficient Di – how
would the cost increase if it wasn’t repaired immediately. If the i-th point will be repaired after time t,
then the cost of repairing it would be equal to:

Ci + t ·Di

Task

Given the coordinates of all points on the wall and the initial position of the robot, and knowing that
transportation of the robot from point x1 to point x2 would take |x1− x2| time5, calculate the minimum
cost of repairing all spoiled points. You can assume that repairing a single point takes no time.

Input

On the first line of input there are two integers N and P (1 ≤ N ≤ 2 000, 0 ≤ P ≤ 109) – the
number of points on the wall, which should be repaired, and the initial position of the robot. Then, N
lines follow, i-th of these lines describes i-th point on the wall and contains three integers Xi, Ci and Di

(0 ≤ Xi ≤ 109, 0 ≤ Ci, Di ≤ 106, Xi 6= P ) – the position of the point and cost coefficients. There are no
two points with equal positions.

Output

Output a single line with integer C, where C is the minimal cost of repairing all points on the wall.

Sample

5Here, x1 and x2 are the coordinates of these two points (not their indices).
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input

3 7

10 32 1

3 5 1

14 0 2

output

72

The optimal plan of repairing points is:

• Transport robot from point 7 to point 10 and
repair the first point after time 3.

• Transport robot from point 10 to point 14
and repair the third point after time 3 + 4 =
7.

• Transport robot from point 14 to point 3 and
repair the second point after time 3+4+11 =
18.

Thus, the total cost of repairing the wall is 5 + 18 ·
1 + 32 + 3 · 1 + 0 + 7 · 2 = 72.
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Critical Projects

task: critical input file: stdin output file: stdout
points: 100 time limit: 600 ms memory limit: 32 MiB

A large project is subdivided into N different subprojects. The manager of the project established
precedence relations among the subprojects. This means that there are pairs of subprojects u and v such
that the completion of the subproject u must be finished before the start of the subproject v. In this
case we say that u directly precedes v. We say that u precedes v if u directly precedes v or there is a
subproject z such that u precedes z and z precedes v. Any subproject u is considered critical if for each
subproject v (other than u) either v precedes u or u precedes v. It is known that the whole project can
be completed, e.i., there is no subproject u such that u precedes itself.

Task

Write a program that computes all the critical subprojects.

Input

The first line of the input contains two integers, N and M . N (1 ≤ N ≤ 100000) is the number of
the subprojects and M (0 ≤M ≤ 1000000) is the number of the direct precedence pairs. Subprojects are
identified by the numbers 1, . . . , N . Each of the next M lines contains two integers u and v, (1 ≤ u 6=
v ≤ N) a direct precedence pair, that is u directly precedes v.
In 40% of the testcases N ≤ 5000 and M ≤ 30000 also hold.

Output

The first line of the output must contain the number of critical subprojects. The second line contains
the identifiers of the critical subprojects in ascending order. The numbers must be separated by a single
space. If there is no critical subproject then the first and only line contains the number 0.

Samples

input

7 9

1 3

2 3

3 4

3 5

4 6

5 6

1 7

3 7

7 4

output

2

3 6
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6

1

2

3

7

4

5

page 25 of 75 licensed under CC BY-SA 3.0



VPCPC 2014 June 28 – July 6, 2014

Connect Highways

task: networks input file: stdin output file: stdout
points: 100 time limit: 400 ms memory limit: 32 MiB

In Byteland, there are two highway networks operated by two companies: Red and Blue. Both
networks consist of junction points and straight lines connecting pairs of junction points, called segments.
Any two segments are non-crossing, meaning that they can only touch at junction points. Both networks
are connected, that is any two junction points are connected through a series of consecutive segments.
Moreover, the two systems are disjoint, i.e., no junction point appears in both networks. The two
companies have now decided to fuse into a single one, and they want to connect their networks by
building a straight line segment between two junction points, one in each network. The new segment
cannot cross any existing segment.

Task

Write a program that computes a suitable connecting segment.

Input

The input contains the description of the Red, followed by the description of the Blue network. The
first line of the description contains two integers N (2 ≤ N ≤ 200000) and M (1 ≤ M ≤ 700000). N
is the number of the junction points and M is the number of the segments. Each of the following N
lines contains two integers x and y (−1000000 ≤ x, y ≤ 1000000), which are the coordinates of a junction
point. Each of the following M lines contains two integers p and q (1 ≤ p 6= q ≤ N), the endpoints of a
segment. Junction points are identified by the numbers 1, . . . , N in the order of their appearance in the
input.

In the 30% of the testcases the number of the junction point and the number of the segments are not
larger than 3000 in both networks.

Output

The first and only line of the output contains two integers u and v, the endpoints of a connecting
segment. That is, u is junction point of the Red, v is a junction point of the Blue network and the line
segment with endpoints u and v crosses no segment of any of the networks. If there are multiple solutions,
your program should output only one; it does not matter which one.

Samples
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input

5 6

0 3

1 1

6 0

5 3

9 8

1 2

1 3

4 3

3 5

1 5

2 3

4 4

6 4

4 4

4 2

2 3

1 2

4 2

2 3

3 4

output

5 1
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Next Permutation

task: nextperm input file: stdin output file: stdout
points: 100 time limit: 100 ms memory limit: 32 MiB

Permutations are intensively studied in mathematics and computer science. Pattern avoiding permu-
tations are of special interest. A permutation p1, p2, . . . , pn of the natural numbers 1, . . . , n is called 3-1-2
pattern avoiding if there are no three indices 1 ≤ i < j < k ≤ n such that pi > pj , pi > pk and pj < pk.

Task

Write a program that computes for a given 3-1-2 pattern avoiding permutation the next 3-1-2 pattern
avoiding permutation according to the lexicographic ordering.

Input

The first line of the input contains one integer n (3 ≤ n ≤ 10000). The second line contains n positive
integers separated by single spaces, a 3-1-2 pattern avoiding permutation of the natural numbers 1, . . . , n.
The input is not the decreasing sequence n, n− 1, . . . , 1.

Constraints

In the 40% of the testcases n ≤ 1000 also holds.

Output

The first line of the output must contain the 3-1-2 pattern avoiding permutation that follows the input
permutation in the lexicographic ordering. The numbers must be separated by a single space.

Samples

input

5

2 4 5 3 1

output

2 5 4 3 1
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Game

task: game input file: stdin output file: stdout
points: 100 time limit: 100 ms memory limit: 1 GB

Mirek really likes playing with numbers. Together with his friend, Kamil, he plays a following game.
At the beginning, there are two non-negative integers – A and B. Let’s say A 6 B. The players can
perform one of two moves in turns:

• Replace B with B − AK . Number K can be any integer chosen by the player, considering the
limitations that K > 0 and B −AK ≥ 0.

• Replace B with B mod A.

If B 6 A, similar moves are possible. The player who changes any number into 0, wins. Mirek always
starts. He likes this game, but he likes winning much more. Help him determine who will win, if both of
them play optimally.

Task

You are given the description of games played by Mirek and Kamil. For every game determine who
will win, Mirek or Kamil.

Input

First line contains an integer T (1 ≤ T ≤ 104), the number of games played by boys. In the next T
lines, there are descriptions of those games. Every such line contains two integers A, B (1 ≤ A,B ≤ 1018)

In the 30% of testcases A,B ≤ 1000.

Output

Output T lines. The i-th line should contain the name of the player who wins the i-th game, Mirek
or Kamil.

Samples

input

4

1 1

12 4

4 6

15 31

output

Mirek

Mirek

Kamil

Mirek
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Posters

task: posters input file: stdin output file: stdout
points: 100 time limit: 2000 ms memory limit: 1 GB

Mirek is a devoted fan of his favorite music band. He attends every concert and collects their posters.
Each time, when he gets a new poster, he hangs it on the wall, above his bed. After many years of
collecting posters, almost the whole wall has been covered with them and now Mirek cannot find space
for the new ones. He just got some new posters to hang and he needs your help to find the best place
for them on the wall. For each poster and its placement, Mirek would like to know how much this poster
would cover other posters.

Task

You are given the coordinates of the posters which already hang on the wall and the coordinates of
the posters which do not hang yet, but Mirek considers hanging them. For each new poster, find the area
of the parts of hanging posters which would be covered directly by this poster.

The posters on the wall may overlap, and if their intersection is covered, you shouldn’t count its area
twice.

Input

On the first line of input there is one integer N (1 ≤ N ≤ 100 000) – the number of posters which
hang on the wall. In the next N lines, there are descriptions of those posters. In N + 2 line there is one
integer M (1 ≤M ≤ 100 000) – the number of new posters which Mirek would like to hang on the wall.
In the next M lines, there are descriptions of those posters.

Each poster is a rectangle with edges parallel to axis. It is described by four integers x1, y1, x2, y2
(0 ≤ x1 < x2 ≤ 109, 0 ≤ y1 < y2 ≤ 109), denoting the coordinates of the bottom left corner and the top
right corner.

In 12.5% of testcases n,m ≤ 10, the coordinates are not greater than 100.
In 25% of testcases n,m ≤ 50.
In 50% of testcases n,m ≤ 1000.
In 50% of testcases the coordinates are not greater than 30 000.

Output

For each new poster output one line containing an integer – the answer for the Mirek’s problem. The
answers should be printed in the same order as the posters were given in the input.
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Sample

input

2

0 1 3 5

2 3 6 6

2

1 0 5 4

4 2 7 7

Mirek’s wall is presented on the picture below.
Dashed rectangles are the new posters, and filled
rectangles are the posters which have been already
hanged.

(0, 0)

output

8

6
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Sorting

task: sorting input file: stdin output file: stdout
points: 100 time limit: 1000 ms memory limit: 1 GB

Your friend, Mirek, had some files containing integers. He had to sort integers in each file in ascending
order. Mirek is an IT specialist so, of course, he tried to find a command line tool that would do his
task. The name of a tool wasn’t hard to guess, but it didn’t work as Mirek expected – after sorting the
files, he realized that this tool was treating every integer as a string and it sorted them lexicographically.
He knew that such a thing could happen, but he was surprised anyway – these files were still sorted in
ascending order.

Now, Mirek wonders how lucky he was and how was even possible that integers from these files could
have had same lexicographical and numerical order. Help him satisfy his curiosity.

Task

Given a range of integers [A,B], determine the number of subsets of those integers, that their lexico-
graphical and numerical orders are equal.

Input

On the first and only line of input there are two integers A and B (1 ≤ A ≤ B ≤ 1018, B−A ≤ 105).

Output

Output a single line with integer M , where M is the number of subsets of set {A,A+1, . . . , B}, which
keep specified condition. As the answer may be really big, output it modulo 109 + 7.

Sample

input

98 101

output

7

Those subsets are: ∅, {98}, {99}, {100}, {101},
{98, 99}, {100, 101}.
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Mission

task: mission input file: stdin output file: stdout
points: 100 time limit: 1000 ms memory limit: 1 GB

Attention soldier!

I have a special task for you. We have detected an enemy base and it needs to be destroyed. You will
be given a map and enough bombs to blow it up. After the action a helicopter will be waiting for you in
the forest nearby.

Sounds easy, doesn’t it? Find the fastest way to achieve the goal and make sure you don’t visit any place
twice, otherwise you will be detected.

Is everything clear? Very well... get ready, because you are leaving in 10 minutes!

I wish you good luck, don’t get killed and see you at the dinner.

Task

You are given an undirected graph and its three different vertices: your base, enemy base and the
place where helicopter is waiting. Find the shortest path in the graph from your base to the helicopter’s
place. The path must go through the enemy base and can’t visit any vertex twice.

Input

First line of the input contains five space separated integers N , M , B, E, H (1 ≤ B,E,H ≤ N ,
B 6= E 6= H 6= B).

The graph contains N vertices numbered 1 to N , your home base is at vertex B, enemy base at vertex
E and the helicopter is waiting at vertex H.

Following M lines describe the edges of the graph. Each line contains three space separated integers
v, w and t (1 ≤ v, w ≤ N , v 6= w, 1 ≤ t ≤ 1 000 000). It means there is an undirected edge connecting
vertices v and w and it costs t units of time to traverse the edge.

No two vertices are connected by more than one edge.

It holds 3 ≤ N ≤ 1 000 and 0 ≤M ≤ 1 000. In at least 30% testcases N ≤ 20.

Output

Output a single line with a single integer, the least amount of time needed to complete the mission.
If it is impossible to complete the mission, output −1 instead.

Samples

input

3 2 1 2 3

1 2 10

2 3 20

output

30

input

3 0 2 1 3

output

-1
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input

4 4 3 2 4

2 3 5

3 1 1

1 4 1

2 4 100

output

105
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Newspapers

task: newspapers input file: stdin output file: stdout
points: 100 time limit: 4000 ms memory limit: 1 GB

In the beautiful Polish city called Mirkow, there are n intersections which are connected by n − 1
bidirectional streets. It is possible to travel between every pair of intersections using these streets.

Mirek works in Mirkow as a paper boy and he delivers newspapers to the villagers. For every street
it is known how many people live there (it is also the number of newspapers he should deliver on that
street). Each day he chooses two intersections and visits every house on the shortest path between them.
Mirek’s daily salary is proportional to the average number of newspapers delivered on a single road (the
number of delivered newspapers divided by the number of traversed roads).

At first, Mirek tried to be smart by delivering newspapers only on the road with the highest number
of habitants, but the boss found out what his strategy was and tried to stop it, because too many people
were not getting their newspapers. The boss gave Mirek an additional constraint: he had to choose a
route containing not less than k roads.

Help Mirek and find the optimal path for him.

Task

Given the description of Mirkow, find a path containing k streets or more with the highest number of
delivered newspapers per road.

Input

On the first line of input there are two integers n and k (1 ≤ n ≤ 50 000, 1 ≤ k ≤ n−1) – the number
of intersections in Mirkow and the minimal length of Mirek’s path. On the next n − 1 lines there are
descriptions of streets. Each description consists of three integers a, b and c (1 ≤ a < b ≤ n, 0 ≤ c ≤ 106)
– they mean that there is a street connecting intersections a and b and on this road there live c people.

You can assume that there exists a path of length k.
In tests worth 30 points: n ≤ 1 000.

Output

Output one number – the average number of delivered newspapers on a single road in the optimal
route. The output will be considered correct if the difference between it and the correct answer is less
than 10−6.

Sample

input

5 2

1 2 4

2 3 1

3 4 3

3 5 3

output

3.00000000
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An inexperienced slalomer

task: slalom input file: stdin output file: stdout
points: 100 time limit: 300 ms memory limit: 1 GB

It is Hubert’s first slalom race, so naturally he feels very nervous. Moreover, it is also his first day on
skis and he has not learnt how to make turns yet – he can only slide along a straight line. But nothing
is lost yet. Maybe the designer of this particular course was not careful enough, so it is actually possible
to pass through every gate without taking a single turn.

Task

You are given the description of a slalom course with n gates. The course runs from left to right.
Each gate is represented by a vertical line segment between two poles. From a bird’s-eye view, Hubert
looks like a disk with diameter d (d ≥ 0) and the trajectory of his center follows a straight line. He can
choose his start point anywhere to the left of the leftmost gate, and his finish point anywhere to the right
of the rightmost gate. To complete the course, Hubert must pass with his entire body between the poles
of all gates. Touching the poles is allowed.

Find the largest diameter d such that there is a trajectory enabling Hubert to complete the course.

Input

The first line of the input contains a single integer n – the number of gates (1 ≤ n ≤ 105). Each of
the n following lines describes a gate and consists of three space-separated integers x, y1, y2 (0 ≤ x ≤ 109,
0 ≤ y1 ≤ y2 ≤ 109). The described gate is the vertical line segment with endpoints [x, y1] and [x, y2]. No
two gates have the same x-coordinate.

Output

Output a single line with the largest d such that Hubert can complete the course. We will accept
answers with absolute or relative error less than 10−9. In C++, you can output the answer using
printf("%.10lf\n", d);

If there is no such non-negative value of d, output a single line with word Impossible.

Samples

input

3

4 3 7

6 6 9

1 5 10

output

1.3728129460

input

2

3 7 9

10 4 4

output

0.0000000000

input

3

0 4 7

2 0 3

4 4 7

output

Impossible
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Tickets

task: tickets input file: stdin output file: stdout
points: 100 time limit: 800 ms memory limit: 32 MiB

The match of the year will be played next week. There are N seats in the stadium numbered by
the integers 1 to N . Each fan can request one ticket and can specify the range of seats where he would
be willing to sit. The range is specified by two integers F and L, the first and last seat in the range,
respectively. This means that the fan accepts any seat S such that F ≤ S ≤ L holds. The ticket office
has already received M requests from football fans and wants to select the maximal number of requests
that can be simultaneously satisfied.

Task

Write a program that computes the maximal number of fans that each can obtain a ticket with a
suitable seat, and gives an adequate seat assignment. No two fans can get the same seat.

Input

The first line of the input contains two integers N (1 ≤ N ≤ 100000), the number of seats, and M
(1 ≤ M ≤ 1000000), the number of requests. The seats are numbered by 1, . . . , N . Each of the next M
lines contains two integers F and L (1 ≤ F ≤ L ≤ N), a request specification. Requests are identified by
the numbers 1, . . . ,M in the order of their appearance in the input.

Output

The first line of the output must contain one integer K, the maximal number of the selected requests.
Each of the next K lines contains two integers S R, a seat assignment, where S is a seat number and R
is the number of the request obtaining the seat S. The seat assignments can be given in any order. If
there are multiple solutions, your program should output only one; it does not matter which one.

Samples

input

10 9

1 3

2 4

5 7

2 6

1 5

3 7

4 8

7 9

3 8

output

9

1 1

2 5

3 2

4 4

5 6

6 9

7 3

8 7

9 8
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Hyperways

Problem author: Marián Horňák
Task preparation: Marián Horňák
Solution writeup: Michal Forǐsek, Marián Horňák

Formally, planets are graph vertices, hyperways are edges and unsafe hyperways are bridges in the
graph. Graph is not directed but can contain multi-edges and self-loops. Our task is to output how many
edges are not more bridges after each edge addition.

Slow solutions

Basic idea of slow solutions is to recalculate number of bridges after each edge addition. You can do
it in quadratic time deleting each edge and running BFS / DFS to find out whether it has changed the
number of components. (The edge is bridge if and only if you split the graph deleting it.) This solution
runs in O(m3) time.

To improve it, you can find all the bridges running a single DFS. You need to remember the “time”
you first visited each vertex. It is called visit time. Time can be for example the number of vertices you
visited before. When returning from vertex v back to vertex u using some edge e, consider the earliest
visit time you have met since you entered e. Lets call it return time. Return time can be calculated as
the minimum of visit time of v and the return times of all the other edges incident to v. If this wasn’t
first visit of v, we returned directly and it is just v’s visit time.

If the return time of e is higher than (or equal to) the first visit time of u, vertices u and v can be
connected through the vertex this time belongs to and thus e is not a bridge. Otherwise, part of graph
we visited has no other connection to the rest and e is a bridge. Therefore, we can easily decide whether
e is a bridge or not. Solution works in O(m2) time.

Union Find algorithm

Union Find algorithm is a prerequisite to the optimal solution Since it is well known algorithm, I just
mention it briefly.

Imagine you have a number of disjoint sets of elements. Union Find allows you to perform two
operation on these sets: join two sets into one and find out the set given element is in. It works in
amortized time complexity O(k · α(k)), where k is the number of operations and α is the inverse of
extremely fast-growing Ackermann function.

Optimal solution

Union Find can be used to determine the component vertex belongs to. When adding an edge that
connects two components, this edge must be a bridge and thus the number of edges that are no more
bridges is 0.

Problem is with edges that connects vertices from the same component. Suppose, the first such edge
was added. Since, it is the first one, graph was a forest before and this edge creates a cycle c. All the
edges in the cycle are no more bridges, so we can output cycle size.

Imagine we have added few new edges and there is at least one edge e incident to some vertex of the
cycle c. Now we move e to the another vertex of the cycle c. This operation will not create or remove
any new cycles, because all the cycles that may be affected intersect with c before as well as after the
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operation. Therefore, this operation does not bridgeness of any edge. This allows us to do not care about
which cycle we are using and thus merge cycle c into one vertex.

Since c is the only cycle in the time of its creation, merge will make our graph the forest again.
Repeating this, we can process all the vertices.

The only question is, how to merge the cycle.

Cycle merging

Union Find can be used to merge the vertices. The problem is to calculate the cycle.
Consider the spanning forest of the complete graph, created by by skipping all the edges, that would

create a cycle. This can be easily precalculated (using Union Find to check whether next edge will be
bridge). Then one can select root in every tree of the forest and use DFS to direct the edges to the root.

When the first non-bridge edge comes, all edges in the real graph are bridges. Therefore, they are
subset of the edges in the precalculated directed spanning forest and the created cycle is the same in
both graphs. In the directed graph we are able to find the lowest common ancestor (LCA) of connected
vertices which is the top vertex of the cycle.

LCA can be found by repeatedly moving deeper vertex one generation up (depths can be also precal-
culated).

After the cycle is found, vertices are merged also in precalculated graph. This does not affect the the
structure of the graph and we can suppose they were never split so the above argumentation can be used
again.

Every merge decreases the number of mergeable elements by one. There are three levels of merges:
precalculation, components and vertex merges. The number of Union find requests is linear to the number
of edges and the number of merges. DFS runs in linear time. Finding LCA visits each vertex once (then
is merged). Therefore, the time complexity is O(m · α(m)).
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Dynamic memory allocation

Problem author: Peter ‘Bob’ Fulla
Task preparation: Peter ‘Bob’ Fulla
Solution writeup: Peter ‘Bob’ Fulla

It is quite obvious how to process a query of either type in time O(n), but such a solution would
certainly fail to achieve the perfect score for this task. We will describe two approaches that lead to
algorithms with time complexity O(log n) per query.

Solution based on segment trees

We build a segment tree on top of the array of bytes. In each node, we store the following information
about the segment represented by the node:

• the number of allocated bytes in the segment,

• the length of the longest continuous block of free bytes in the segment,

• the number of consecutive free bytes at the beginning of the segment,

• the number of consecutive free bytes at the end of the segment.

Note that we can easily compute these values for a node from the values stored in its two children.

To process an allocation query, we first check whether the longest block of free bytes in the entire
array would be long enough to satisfy the query. If it is too short, we return −1. Otherwise, we need
to find the leftmost block of length at least `. This can be done using recursion: If the longest block in
the left-hand half of the array is of length ` or more, we continue looking for the answer there. If this is
not the case, we check whether we obtain a sufficient block of free bytes by concatenating the block at
the end of the left-hand half of the array with the block at the beginning of the right-hand half. If this
option also fails, the sought block must lie completely in the right-hand half of the array.

After we find the position of the block to allocate, we need to change the state of bytes in it and make
necessary updates to the values in the segment tree. However, the number of bytes allocated in a query
may reach Θ(n), so we must employ a technique called lazy propagation: Whenever we want to allocate
all bytes in the segment corresponding to a node of the segment tree, we simply mark the node with a
flag meaning “all bytes below are allocated”, update the values stored in it, and do not descend to its
subtree at all. When processing a subsequent query, we may enter a marked node. Only at that time we
unmark the node and propagate the flag to its two children.

Freeing a block of bytes is very similar to allocating, we just need a different flag meaning “all
bytes below are free”. To compute the number of allocated bytes before a query, we simply add up the
corresponding values stored in nodes of the segment tree.

The lazy propagation technique guarantees that we visit at most 2 log n nodes when updating the
tree. Therefore, the time complexity is O(log n) per query.

Solution based on self-balancing binary search trees

This approach requires us to implement a customized self-balancing binary search tree, for example
a treap. The nodes of the tree will represent maximal blocks of consecutive free bytes and they will be
ordered by their positions in the array. In addition, we need to maintain the following values in every
node:
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• the sum of lengths of blocks in the node’s subtree,

• the maximum of these lengths.

Using the precomputed maxima of subtrees, we can easily find the leftmost block with length ` or
more in time O(log n). To completely process an allocation query, we just need to update the found block
(or remove it, if its length equals exactly `).

Dealing with freeing queries is now a bit more complicated, as they are not necessarily aligned with
blocks of free bytes. We split the tree before the first block and after the last block contained by the
freed interval, update the adjacent blocks if necessary, and merge the parts of the tree together. These
operations can be implemented with time complexity O(log n).
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Shades of the town

Problem author: FIXME Problem Setter
Task preparation: FIXME Testdata Developers
Solution writeup: Michal ‘misof’ Forǐsek

We will first discuss a simple brute-force solution. Then, we will show how to reduce this problem to
a standard string matching problem, and then we will solve that problem.

Solution using brute force

Given a pattern of length `i, we can simply try all m− `i + 1 possible offsets between the pattern and
the sequence of shadows. For a fixed offset, we simply verify whether all pairs (building,shadow) give the
same scaling factor. This can be done in O(`i).

Thus, the total time complexity of the brute force solution is O(m ·
∑
`i).

Reduction to string matching

The main trick in solving this task is getting rid of the scaling. To do that, we can make the following
observation: the only thing that matters are ratios of consecutive building heights / shadow lengths.

Here’s the same thing formally.
Notation: Given a sequence A = (a1, . . . , ak) of positive reals, the sequence ρ(A) (read “ratios of A”)

is defined as follows: (a2/a1, a3/a2, . . . , an/an−1).
Lemma: Given two sequences A = (a1, . . . , ak) and B = (b1, . . . , bk) of positive reals, the sequence B

can be obtained by scaling A if and only if ρ(A) = ρ(B).
Proof of the lemma should be obvious.

Thus, instead of solving the original problem, we can compute the ratios of all patterns and look for
those in the ratios of the shadow lengths. Thus we get a standard string matching problem: given a long
string (“haystack”) and a collection of short strings (“needles”), count the number of occurrences of all
needles in the haystack. Of course, the alphabet we are using are actually fractions: each “letter” of our
strings is actually a rational number.

This standard string matching problem can be solved optimally using the Aho-Corasick algorithm
The time complexity of this solution is O(m+

∑
`i), that is, linear in the input size.

A slightly slower but slightly simpler solution is to use an O(m+ `i) string matching algorithm (such
as KMP or Rabin-Karp hashing) separately for each pattern. With n patterns, this gives us the total
time complexity O(nm+

∑
`i).

The Aho-Corasick algorithm

The Aho-Corasick algorithm can be seen as a generalization of the Knuth-Morris-Pratt algorithm for
a single pattern. In Aho-Corasick we insert all patterns into a trie, and then build a set of back-links
that corresponds to the failure function of the KMP algorithm. Formally, for each node v in the trie
(other than the root) we have a single back-link that points to the deepest node w that is less deep than
v, and has the property that the string that corresponds to w is a suffix of the string that corresponds
to v. (I.e., if, after processing some letters of the haystack, we can be in the node v, we can also be in
the node w.)
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Some care must be taken when counting the matches. For example, if we are looking for the needles
abcd and bc in the haystack pqrabcuvw, after processing the letters pqrabc we will be in the trie node
that corresponds to the string abc – however, at this moment we should count one occurrence of bc. In
a full implementation of Aho-Corasick this is handled using a second type of back-links (“output links”),
but in our case we can simply precompute this information in linear time once we have the trie with
back-links ready.
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Bus lines

Problem author: Filip Hlásek
Task preparation: Filip Hlásek
Solution writeup: Filip Hlásek

We are given an undirected connected graph with N vertices and N − 1 edges, therefore a tree.
Let’s try to count the number of paths that go through a vertex x. Imagine that the tree is rooted at

x. It has k children, each of them is a root of the subtree of size s1, s2, . . . , sk, respectively. The paths
that go through x have either x as one of the endpoints or have the endpoints in two different subtrees
of x’s children. The total count equals:

numPaths(x) = 2(N − 1) + 2 (s1s2 + s1s3 + . . . sk−1sk)

= 2(N − 1) + 2
∑

1≤i<j≤k

sisj

= 2(N − 1) +

(
k∑

i=1

si

)2

−
k∑

i=1

s2i

= 2(N − 1) + (N − 1)2 −
k∑

i=1

s2i

= N2 − 1−
k∑

i=1

s2i

We can obtain the same result by considering all N(N−1) paths from which s1(s1−1)+· · ·+sk(sk−1)
don’t go through the vertex x.

So far we have counted the number of paths that go through some chosen vertex x. Now we have to
do it for every vertex in the tree, but with better time complexity than O(N2).

Let’s root the tree at an arbitrary vertex. We will run a DFS algorithm from the root. For each
vertex x it calculates the number of paths that go through x, store it in some global variable, and return
the size of the subtree rooted at x. Please note, that to successfully use the above numPaths(x) formula,
for each vertex x we have to know the sizes of all the child subtrees if the whole tree was actually rooted
at x. In our DFS traversal we are missing the size of one subtree for each non-root vertex. To calculate
it, we can use the fact that

∑k
i=1 si = N − 1.

The complete algorithm is illustrated by the following peseudocode:

function DFS(x):
ans = N ∗ N - 1
subtree_size = 1
for v descendant of x:
s = DFS(v)
subtree_size += s
ans -= s ∗ s

s = N - subtree_size - 1
ans -= s ∗ s
// ans contains the number of busses that stops at x
return subtree_size

The time complexity of the algoritm is O(N)
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Cutting

Problem author: Filip Hlásek
Task preparation: Challenge24
Solution writeup: Michal ‘Mimino’ Danilák

This problem was originally used in Challenge24 competition (year 2013, problem Dissection).
Usually the first thing to do with open-data problems is to visualize the data. The reason for doing

it is that most of the time the given data are not random and their structure can be exploited in some
ways. This was also true for this problem and small inputs could be solved optimally even by hand.
I recommend converting the input data into some simple image file format, like PPM 6, which is pure
ASCII format, and can be opened in GIMP.

Our reference solution for this problem is just a basic hill-climbing algorithm:

1. Until the points are not completely separated, add the line which separates most of the points from
each other.

2. It can happen that some lines become redundant during the process. So for each line that can be
removed, while keeping all the points separated, remove it.

3. Now we have a valid solution. Output the best solution found so far.

4. For each line, remove it with the probability P (in our case 0.05).

5. Go to step 1.

6http://en.wikipedia.org/wiki/Netpbm_format
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Investigation

Problem author: Michal ‘Mimino’ Danilák
Task preparation: Michal ‘Mimino’ Danilák
Solution writeup: Michal ‘Mimino’ Danilák

Terminology

In the following text I will refer to the problem in the terms from graph theory, where the houses are
vertices and the roads are edges of the graph, which is also a tree.

By querying a vertex we mean to choose some house and search it.
By a strategy we mean a correct decision tree of queries leading to discovery of the thief. By an

optimal strategy we mean the decision tree of the lowest possible height. In the following text we will
consider only the reasonable strategies, where we will never query a vertex for which the answer can be
infered from the previous queries and answers.

What doesn’t work

During the contest we saw a plenty of submissions trying to solve the problem with various incorrect
strategies:

• choose the center 7 of the tree,

• choose a vertex, which minimizes the size of the biggest subtree,

• choose a vertex, which minimizes the length of the longest path in any of the subtrees.

Even though every such strategy returns an asymptotically optimal solution, requiring O(logN)
queries, for each of them there exists a counter-example where the strategy returns the answer worse by
a constant factor.

Brute-force solution

In each step we remember the set of vertices where the thief can possibly be hiding. Then we try all
the possible ways to choose the next vertex, solve the problem recursively and return the best answer.

Clever implementation with bitmasks and memoization has time complexity O(N ·2N ). Implementing
this solution first would not only give you 40 points, but it would also help you find the counter-examples
for the incorrect strategies you might come up with and help you better understand the devil in this
problem.

Optimal solution

Imagine you already have a strategy which in the worst case requires X queries. We will now define a
strategy function f : V → Z>0 which maps the vertices of the tree into positive integers. For each vertex
v, f(v) = |height of the node in the strategy’s decision tree in which you query v|. In other words, if v1
is in the root of the decision tree (i.e. you first query v1), then f(v1) = X. If vertices v2, v3...vi are on
the second level of the decision tree (i.e. based on the first answer you would query one of the v2, v3...vi),

7http://en.wikipedia.org/wiki/Graph_center
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then f(v2) = f(v3)... = f(vi) = X − 1. And so on, until you assign 1 to the vertices deepest in the
decision tree. Because decision trees of reasonable strategies have for each vertex v exactly one node in
which you query it, the function is always well-defined.

Lemma (path property): For any strategy function holds that for each pair of distinct vertices v1, v2 ∈ V
if f(v1) = f(v2), then on the simple path from v1 to v2 there is a vertex v3 such that f(v3) > f(v1).

Proof: It should be obvious from the construction of strategy function.

We will now show that actually every function f : V → Z>0 satisfying the path property represents
a valid strategy which in the worst case requires no more than Mf queries, where Mf is the maximum
value of f(v). We will prove it by constructing a valid strategy from such function:

First vertex to query, v, will be the one with value Mf . There should be only one such vertex in the
tree, otherwise the path property would not hold. The second vertex to query in each of the subtrees
separated by v is the vertex with the maximum value in that subtree. Again, from the path property we
know there should be only one such vertex in each subtree. And so on.

So to determine the optimal strategy it suffices to compute a strategy function with the lowest maxi-
mum value Mf .

We arbitrarily root the tree and compute f(v) for each vertex in the bottom-up order. For each v,
T (v) represents the subtree rooted at v. Also we say that vertex w ∈ T (v) is visible from v if on the path
from v to w there is no vertex y such that f(y) > f(w). If w is visible from v, we also say that value
f(w) is visible from v. Actually for each vertex we can store the bitmask of all the values visible from v
in T (v). For example if values {5, 4, 2, 0} are visible, we will store (110101)2. We will call it a visibility
mask a write it S(v).

For the bottommost vertices we set f(v) = 1.
For every other vertex v, f(v) will be set to the lowest possible value, while taking the visible values

in T (v) into account. For a vertex v value X is forbidden in any of the two conditions hold:

• value X is visible from v,

• value Y is visible from v in at least two different subtrees and Y ≥ X.

From the visibility masks S(v1), S(v2)...S(vk) of the children of v and the value f(v) we can compute
the value of S(v) using the bit operators as follows:

Sf = 1 << f(v)S(v) = (S(v1)|S(v2)...|S(vk)|Sf )& (Sf − 1). (1.1)

What the complicated-looking formula does, is basically a bit OR of all the children’s visibility masks
with the mask of f(v) and then erasing all the values lower than f(v) from the mask, which are not
visible anymore.

Finally the answer to the original problem is Mf , the maximum value f(v) assigned to any of the
vertices.

Depending on how fast can we calculate the value of f(v) the run time of the algorithm can be O(N)
if we use the clever bit operations machinery and calculate it in constant time. Otherwise we can simply
sequentially find the lowest possible value for f(v), resulting in the total run time O(N · logN) which
would also score 100 points.

Proof of correctness

Now we will prove that the above algorithm always calculates the optimal strategy, even though rooting
the same tree by the different vertex can result into a possibly different strategy, which is nevertheless
optimal.
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The function calculating the visibility mask S(v) (i.e. the ugly bitwise expression above) is monotone
and minimizing. By monotone we mean that by increasing the value of the visibility masks of some of its
children, we do not decrease the value of the visibility mask of their parent. By minimizing we mean that
for the given visibility masks of the children, we calculate the S(v) with the minimum possible value.

Lemma: If the function calculating S(v) is monotone and minimizing, then the bottom-up algorithm
calculates a strategy function f(v) for which Mf is minimal.

Proof: First we will show that the computed visibility mask of the root is minimal. We will prove
it by induction on the height of the tree. Suppose that the masks computed for the children of v are
minimal. It means that they are not greater than corresponding masks for any other strategy function.
Since S(v) is monotone, it wouldn’t help if any of the children values would be bigger. And because S(v)
is also minimizing, there is no smaller visibility mask S(v) for any strategy function.

Because the visibility mask at the root is minimal, so is Mf , because the visibility mask from the root
always contains Mf and no greater values.
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New Tree

Problem author: Gyula Horváth
Task preparation: Gyula Horváth
Solution writeup: Gyula Horváth

Trees are point in the plane. Denote the new tree by Q.
We distinguish two cases.

Case 1

The case when there is no point U with the following property: U is collinear with A, Q and Q is
between A and U .
Consider the point B on the right side of the line

−−→
A,Q which has the smallest angle with

−−→
A,Q. If there

are more such points, chose the one which is closet to A.

Similarly, consider the point C on the let side of the line
−−→
A,Q which has the smallest angle with

−−→
A,Q. If

there are more such points, chose the one which is closet to A.
If there is no such B or C then there is no solution.
It is clear that there is a solution if and only if the pair of points B and C is a solution. That is, the
triangle with nodes A, B and C strictly contains the point Q.

QA

C

B

Case 2

There is a point AA with the following property: AA is collinear with A, Q and Q is between A and
AA. If there are several such points, choose the one which is closest to Q.

In this case a solution exists if and only if there is a point B and there is a point C such that there
is no point inside the triangle with nodes A,B and AA and the triangle with nodes A,AA and C and the
pair B C is a solution.
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C

A

B

Q AA

Indeed, if there is a point BB in the triangle A,B,AA then replace B with BB. Similarly, if there is a
point CC in the triangle A,AA,C then replace C with CC.

B B

A Q AA

B

C

CC

Consider the set R of all point U on the right side of the line
−−→
A,Q with the property that there is no

point inside the triangle C(A,U,AA). Sort the set R by the angle at AA. Similarly, let L be the set of

all point V on the left side of the line
−−→
A,Q with the property that there is no point inside the triangle

C(A,AA, V ). Sort the set L by the angle at A.
We can select solution pair by alternately moving either in R or in L until solution found or exhaust one
of the sets.

L[j]

A AA
Q

R[i] Move in R: i := i+ 1.
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Q
A AA

R[i]

L[j]

Move in L: j := j + 1.

The set of points R and L can be constructed by sorting the points by angle.
Running time of the algorithm : O(n log n)

page 51 of 75 licensed under CC BY-SA 3.0



VPCPC 2014 June 28 – July 6, 2014

Cubic Art

Problem author: Marián Horňák
Task preparation: Marián Horňák
Solution writeup: Marián Horňák

It is not hard to realize that the simple simulation would work in quadratic time, which was enough
to score 50% points! The problem is to write a bugless code that simulates the cube. The key to do it
are the permutations.

Permutations

Although I am sure the reader had met the permutations before, I am going to explain basics. In the
following discussion I will use array indexing starting at 1.

Permutation is an array P containing each of the numbers 1. . . k once. It is understood to be a
rearrangement of the array. P [i] is the index i-th array element should be moved to. Applying permutation
P to the array A creates an array B = A ◦ P such that ∀i : B[i] = (A ◦ P )[i] = A[P [i]]. Permutation
application can be implemented using simple loop.

It is easy to see that for array A and permutations P, Q holds:

∀i : ((A ◦ P ) ◦Q)[i] = (A ◦ P )[Q[i]] = A[P [Q[i]]] = A[(P ◦Q)[i]] = (A ◦ (P ◦Q))[i]

and thus (A ◦P ) ◦Q = A ◦ (P ◦Q). What does this mean? Applying P to the A and then Q to the result
will have the same effect as applying Q to the P and the the result to the A. In other words, we can join
P and Q to a single permutation before we use them. Permutation joining is just an application of the
first one to the second. The above equation also says, that the joining of the permutations is associative
(the order does not matter)

Permutation I that satisfies ∀i : I[i] = i is called identity and does nothing. If Q ◦ P = I holds, Q
is called inverse of P . Applying one permutation and then another is same as doing nothing. Therefore,
the permutations must have opposite effects. The equation Q[P [i]] = I[i] = i can be used to calculate Q
using P .

Cube simulation

The simplest way to simulate the Rubik’s cube, is to represent any sequence of moves as a permutation
of small color squares. To keep it as simple as possible, we can include all 54 (6 · 3 · 3) squares in the
order they are in the input (and will be in the output.)

Since the middles don’t move, we can precalculate the permutation for every elementary move. One
way is to do it all by hand. One can calculate rotating to the other side using inverse. The other
possibility is to write the foursomes that swaps in the cycle and parse them to the permutation.

Now it’s quite easy to make a simple simulation. Read the moves and store corresponding permutations
in the array. After each update just rejoin whole array and apply result to the original cube. This works
in O(n ·m) time.

Optimal solution

The only repetitive work we are doing is rejoining. To make it effective we can use simple interval
tree.
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Let’s enlarge the array of moves to the next power of 2 using identity permutation. This twices the
array in the worst, so it does not affect the time complexity. Now build a complete binary tree using
the array as the leafs. Then let each node to be a join of its children. Since the permutation joining is
associative, the root will now contain the join of the whole array.

After updating a move and its permutation in the leaf, it is sufficient to recalculate the path to the
root. This takes approximately log(n) steps. Therefore, the time complexity is O(n+m · log(n)).
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Universities

Problem author: Michal ‘Mimino’ Danilák
Task preparation: Michal ‘Mimino’ Danilák
Solution writeup: Michal ‘Mimino’ Danilák

In the following text I will refer to the problem in the terms from graph theory, where the universities
are vertices and the roads are edges of the graph, which is also a tree. Each vertex is either black or
white and has a cost associated with it. We say that the path in the tree is balanced if it contains the
same number of black and white vertices. We are looking for the cost of the balanced path for which the
sum of costs of its vertices is maximized.

First I will explain the solution to the easier subproblem. Then I will apply that solution to the
original problem.

Subproblem

You are given a vertex v, find the optimal balanced path that goes through v.
We root the tree by the vertex v. For each other vertex w we calculate the path balance B[w] =∑

x∈pathw−>v
balancex, where balancex is 1 if the vertex is black and −1 otherwise. Obviously if B[w] =

0, then the path from w to v is balanced. For each vertex we also calculate the path cost C[w] =∑
x∈pathw−>v

costx.
Now we have two choices on how the optimal path can look like:

1. v is one of the endpoints on the path,

2. v is one of the inner vertices on the path.

In the first case we can simply look at the vertices w with B[w] = 0 and store the best value C[w]
among them.

In the second case, let c1, c2, ...ck be the children of v, and T (ci) represent the subtree rooted at ci.
Then the endpoints of the optimal path must lie in two different subtrees. For each ci we will calculate
the array BESTci [b] = maxw∈T (ci),B[w]=b C[w], i.e. for each balance b we will store the cost of the best
path from w to v with balance b. Because the indexes to this array can be negative, in C++ either use
map or the following trick:

// now you can index array best even with negative indexes with absolute value up to MAX_BALANCE
int _best[2∗MAX_BALANCE], ∗ best = _best + MAX_BALANCE;

If we want to find the optimal path with endpoints in subtrees T (c1) and T (c2), we can iterate through
all the values stored in BESTc2 and for each balance b we can get the cost of the balanced path starting
in T (c2) and ending in T (c1) as BESTc2 [b] + BESTc1 [balancev − b] − costv and update the best value
found so far. For simplicity the missing values in BEST arrays have value −∞.

After we processed the subtrees T (c1) and T (c2), we can merge theirBEST arrays into oneBESTc12[b] =
max(BESTc1 [b], BESTc2 [b]). In the next step we will process the arrays BESTc12 and BESTc3 in the
same way as described above.

Time complexity of this solution is linear in the number of vertices of the tree.

Original problem

Back to the original problem, where the optimal path can go through any vertex. We will define the
strategy function previously introduced in the solution of Investigation task.
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Function f : V → Z>0, mapping the vertices into positive integers, is a strategy function if for each
pair of distinct vertices v1, v2 ∈ V with f(v1) = f(v2) holds that on the simple path from v1 to v2 there
is a vertex v3 such that f(v3) > f(v1).

We can either construct an optimal strategy function as described in the solution of Investigation task
or for the purposes of this problem any such function with the maximum value of O(logN) would be
sufficient. So you could also use any strategy described in What doesn’t work section of the Investigation
solution.

For each vertex v we define Tf (v) = {w|w ∈ V,∀y ∈ pathw−>v : f(y) ≤ f(v)}. Basically it is the
subtree consisting of vertices reachable from v by traversing only the vertices for which f(w) ≤ f(v).

Lemma: For each pair of distinct vertices v1, v2 ∈ V with f(v1) = f(v2) holds that the subtrees Tf (v1)
and Tf (v2) are disjoint.

Proof: Follows from the property of strategy function.

What will we do now is for each vertex v we will ‘guess’ that the optimal path goes through v and
solve the subproblem with the algorithm described above. But for the subproblem we will only consider
the vertices of the subtree Tf (v), not the whole tree.

Imagine the optimal path in the graph. Let Mpath = max{f(v)|v ∈ path}. There is exactly one
vertex v for which f(v) = Mpath, for which holds that path ⊆ Tf (v). Therefore we would discover this
optimal path when solving the subproblem for the vertex v.

Time complexity of the whole algorithm is O(N ∗ logN) - there are O(logN) different values of f(v)
and from the lemma we know, that the subtrees {Tf (v)|v ∈ V, f(v) = x} are pairwise disjoint, therefore
solving all the subtrees with the same root value takes in total O(N).
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Wall

Problem author: ACM Regionals Central Europe 2004
Task preparation: B lażej Magnowski & Marek Sommer
Solution writeup: Marek Sommer

For the sake of simplicity let’s create an additional point on the wall in which the robot starts
repairment, and set its cost coefficients to 0 0 (so that it won’t change the result). Let’s name all the
points (including the false one) in order they appear on the wall: W1, W2, W3, . . ., Wn. Let’s say that
the robot starts in point Wk.

First of all, we can see that the first cost coefficient Ci does not really affect the order of visiting
the points on the wall. No matter what that order would be, these coefficients are constant and always
should be added to the final cost. We must count the sum of Ci coefficients, add them to the result, and
then we can ignore them to the rest of our algorithm, assuming, that from now on there is only one cost
coefficient – Di.

Let’s compute the prefix and suffix sums of points coefficients, which will help us later. To be more
precise, let’s construct two arrays P and S such that for each i ∈ {1, 2, . . . , n}:

P [i] =

i∑
j=1

Dj

S[i] =

n∑
j=i

Dj

Also, let’s assume that for i 6∈ {1, 2, . . . , n}, P [i] = S[i] = 0 (that will help us deal with special cases
when i = 0 or i = n+ 1).

After applying above three preparation steps, we can proceed to the algorithm. We will use dynamic
programming. Let’s compute the answers for some subsets of our points, which will lead us to the answer
for all the points. Let’s create an array dp[i][j][f ] with the following meaning:

• If f = 0, dp[i][j][f ] is equal to the minimal cost of repairing pointsW1,W2, . . . ,Wi,Wj ,Wj+1, . . . ,Wn

with the robot starting at position Wi.

• If f = 1, dp[i][j][f ] is equal to the minimal cost of repairing pointsW1,W2, . . . ,Wi,Wj ,Wj+1, . . . ,Wn

with the robot starting at position Wj .

In short, dp[i][j][f ] is equal to the cost of repairing points from only a prefix 1..n and a suffix j..n, starting
from position i or j (which depends on f – if it is 0 or 1). Not all the fields in this array will be used.
Only those which meet conditions: 0 ≤ i < j ≤ n+ 1, f ∈ {0, 1}. For simplicity, let’s say that prefix 1..0
is empty and suffix (n+ 1)..n is also empty.

If i = 0 and j = n+ 1, there are no points to repair, so:

dp[0][n+ 1][0] = dp[0][n+ 1][1] = 0

In some more general situations (let’s assume that i 6= 0 and j 6= n+ 1):

dp[0][j][0] = (let’s leave it undefined)

dp[0][j][1] = |Xj −Xj+1| · S[j + 1] + dp[0][j + 1][1]
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dp[i][n+ 1][0] = |Xi−1 −Xi| · P [i− 1] + dp[i− 1][n+ 1][0]

dp[i][n+ 1][1] = (let’s leave it undefined)

In the most general situations (when i 6= 0 and j 6= n+ 1):

dp[i][j][0] = min (|Xi−1 −Xi| · (P [i− 1] + S[j]) + dp[i− 1][j][0], |Xi −Xj | · (P [i− 1] + S[j]) + dp[i− 1][j][1])

dp[i][j][1] = min (|Xj −Xj+1| · (P [i] + S[j + 1]) + dp[i][j + 1][1], |Xi −Xj | · (P [i] + S[j + 1]) + dp[i][j + 1][0])

Two equations above jest check two possibilities to go left or to go right and they choose the one,
with smaller cost.

All theses equations together allow to compute any value dp[i][j][f ]. The only difficulty left, is to
process them in a correct order (to assure that every value on the right side of equation, is computed
before the value on the left side). We can notice that every equation uses answers for a smaller number
of points, so we can process the dynamic states in order from the one with 0 points to the ones with n
points (the order of states within the same number of points does not matter).

After computing answer for every state, the answer to the problem will be held under dp[k][k + 1][0]
or dp[k − 1][k][1], where k is the initial position of the robot (the false point we made at the beginning).
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Critical Projects

Problem author: Gyula Horváth
Task preparation: Gyula Horváth
Solution writeup: Gyula Horváth

Consider the graph model of the problem: a directed graph G = (V,E) where V is the set of the
subprojects, V = {1, . . . , N} and the edges of G are pairs (u, v) if u precedes v. G is obviously acyclic
graph. Consider the layer decomposition of the node set V.

8.Layer 1. 2. 3. 4. 5. 6. 7.

The first layer contains all nodes of indegree 0. Delete all nodes of the first layer, then all nodes of 0
indegree in this graph are the members of the second layer, and so on. Denote the layer number of node
p by L(p). Therefore the following holds.

L(p) =

{
1 if indegree(p) = 0
max{L(q) : q → p ∈ E}+ 1 if indegree(p) > 0

(1.2)

We define the function F as follows.

F (p) =

{
∞ if outdegree(p) = 0
min{L(q) : p→ q ∈ E} otherwise

(1.3)

Define the function Ln(x) as the number of nodes in the layer x.

Ln(x) = |{p : L(p) = x}|

Statement

A node p is critical if and only if the following two conditions hold.

Ln(L(p)) = 1

(∀q)(L(q) < L(p)⇒ F (q) ≤ L(p))

Assume that the conditions hold for a node p. We will show that for all node q if L(p) < L(q) then there
is path from p to q and if L(q) < L(p) then there is path from q to p.
From the first condition and the definition of the function L() it follows that for all nodes q with
L(p) < L(q) there is path from p to q: p q.
Let L(q) < L(p). We prove by induction on L(q) that there is path from q to p. If L(p) = L(q) + 1 then
by the definition of L and the second condition it follows that there is an edge from q to p. Assume that
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L(q) = k and for all nodes s such that k < L(s) ≤ L(p) there is a path from s to p. It follows from the
second condition that there is a node s such that L(s) ≤ L(p) and there is an edge from q to s. Therefore
there is path q → s p.

Conversely, assume that p is critical. This implies that p must be the only node in its layer, that is
the first condition holds. Assume that L(q) < L(p) and F (q) > L(p). This is a contradiction, because
there is a path q  p.

Therefore if we compute the function L and F we can determine all critical nodes.
In order for checking the second condition, we compute a topological order T = p − 1, . . . , pn with the
following property that for all nodes p and q if L(p) < L(q) it follows that p precedes q in the topological
order. This can be done in Θ(n+m) time when n id the number of nodes and m is the number of edges
of the graph.
Running time of the algorithm : O(n+m)
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Connect Highways

Problem author: Gyula Horváth
Task preparation: Gyula Horváth
Solution writeup: Gyula Horváth

Naive solution

Check for all pairs of points a in Red and b in Blue whether any segment of Red or Blue crosses the
segment (a, b). The running time of this algorithm is O(n1 n2 (m1+m2)) where n1 and n2 are the number
of points, m1 and m2 are the number of segments, respectively.

Linear time solution

Let a and b be the points with least y-coordinates in Red and Blue networks, respectively:

a

b

a : (∀p ∈ Red)(a.y ≤ p.y)

b : (∀p ∈ Blue)(b.y ≤ p.y)

Without loss of the generality we assume that a.y ≤ b.y.
We distinguish three cases.

Case 1: a.y = b.y

a b
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In this case let a and b be the points such that there is no point between a and b. In this case the
pair a b is a solution.

Case 2: a.y < b.y and there is no segment crossing the segment (a, b)

In this case the pair a b is a solution.

a

b

Case 3: a.y < b.y and there is a segment crossing the segment (a, b)

c

b

a

c1

c2

Let c1 and c2 the endpoints of the such that the intersection of the segment (a, b) and the segment
(c1, c2) is closest to the point b. Assume that c1.y < b.y. Then the pair c1 b is a candidate solution. It
is a solution if there is no segment crossing the segment (c1, b). Otherwise take the point c which is the
endpoint of a crossing segment and there is no endpoint of crossing segment inside the triangle (b, a, c).
In this case the pair c b is a solution.
In order to compute the segment (c1, c2) we define a linear ordering relation on the set of segments
crossing the segment (a, b):

(p1, p2) < (q1, q2)

if and only if either of the case depicted in the following figure hold.
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p2

b

a a

b

q1

q2

p1

p2
q1q2p1

It is clear, that segment (c1, c2) is the maximal element of the set of segments crossing the segment (a, b)
according to the relation defined above.
For the implementation we need the following three basic geometry operations.

int Turn(Point P0,Point P1,Point P2){
//Output:
//-1 iff P0-P1-P2 clockwise turn
// 0 iff P0,P1,P2 collinear
// 1 iff P0-P1-P2 counter-clockwise turn

int64 crossp=(P1.x-P0.x)∗(P2.y-P0.y)-(P2.x-P0.x)∗(P1.y-P0.y);
if (crossp<0)

return -1;
else if (crossp>0)

return 1;
else

return 0;
}

bool Sless(Point p1, Point p2, Point q1, Point q2){
//Input: segment (p1,p2) and (q1,q2) crosses segment (a,b)
//Output: true iff intersection of (a,b) and (p1,p2) is closer to a then the intersection of (a,b) and (q1,q2)

int pq1=Turn(p1,p2,q1);
int pq2=Turn(p1,p2,q2);
int qp1=Turn(q1,q2,p1);
int qp2=Turn(q1,q2,p2);
return pq1<=0 && pq2<=0 | | qp1>=0 && qp2>=0;

}

bool Between(Point p1,Point p2, Point p3){
//Input: p1-p2-p3 collinear
//Output: true iff p3 is between p1 and p2

return (abs(p1.x-p3.x)<=abs(p2.x-p1.x)) &&
(abs(p2.x-p3.x)<=abs(p2.x-p1.x)) &&
(abs(p1.y-p3.y)<=abs(p2.y-p1.y)) &&
(abs(p2.y-p3.y)<=abs(p2.y-p1.y)) ;

}

Running time of the algorithm : O(m1 + m2) where m1 and m2 are the number of segments of
Red and Blue networks, respectively.
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Next Permutation

Problem author: Gyula Horváth
Task preparation: Gyula Horváth
Solution writeup: Gyula Horváth

Naive solution

Algorithm: Take next permutation until 3-1-2 avoiding permutation found.
The running time of this algorithm is exponential in worth case, since there is a 3-1-2 avoiding permutation
π of n elements such that there are (n − 2)! − 1 permutations between π and the next 3-1-2 avoiding
permutation. For example, if π = 〈n − 1, n, n − 2, . . . , 2, 1〉 then the next 3-1-2 avoiding permutation is
〈n, n− 1, n− 2, . . . , 2, 1〉.

Linear time solution

First we show that 3-1-2 avoiding permutations can be represented by stack generation. Consider the
following stack operations

pop

move

push

in=<...>

stack=<...>

out=<...>

I/O specification of the stack operations

{in = 〈a, α〉 ∧ stack = 〈β〉 ∧ out = 〈γ〉} move {in = 〈α〉 ∧ stack = 〈β〉 ∧ out = 〈γ, a〉} (1.4)

{in = 〈a, α〉 ∧ stack = 〈β〉 ∧ out = 〈γ〉} push {in = 〈α〉stack = 〈β, a〉 ∧ out = 〈γ〉} (1.5)

{in = 〈α〉 ∧ stack = 〈β, b〉 ∧ out = 〈γ〉} pop {in = 〈α〉 ∧ stack = 〈β〉 ∧ out = 〈γ, b〉} (1.6)

We say that a permutation π can be generated by stack if there is a sequence of stack operations that
results π from the input sequence 〈1, 2, . . . , n〉.

Statement

A permutation π is a 3-1-2 pattern avoiding permutation if and only if π can be generated by stack.

Proof

Assume that π is generated by stack. Consider the moment when an element x moved to the output (by
move or pop operation). In this moment every element of the input sequence larger then x, moreover,
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the stack content is always decreasing sequence. Therefore there is no 3-1-2 pattern in π with x as the
first element of the pattern.

Conversely, we prove by induction on the length of the permutation that every 3-1-2 pattern avoid-
ing permutation can be generated by stack. It is obvious that every permutation of length 1 or 2 can
be generated by stack. Consider a 3-1-2 pattern avoiding permutation π of the elements 1, . . . , n and
decompose it as π = 〈α, 1, β〉. Both α and β are 3-1-2 pattern avoiding sequence. Moreover, due to the
3-1-2 pattern avoiding property, if k is the largest element of α then α contains all numbers from 2 to
k. Consequently, β contains all numbers from k + 1 to n. By induction, α can be generated by stack
with a sequence of stack operations (α) from the input sequence 2, . . . , k. Similarly, β can be generated
with a sequence of stack operations (β) from the sequence k + 1, . . . , n. Therefore, the sequence of stack
operations push, (α), pop, (β) generates π from the input sequence 〈1, 2, . . . , k, k + 1, . . . , n〉.

Notice that the generating sequence of stack operations is unique if push; pop not allowed (give move
instead).
Let π be a 3-1-2 pattern avoiding permutation of length n. Decompose π according to the position of
the number n in π: π = 〈π1, u, n, π2〉. The position of u is the largest position such that there is a larger
element than u in the sequence whose position is larger than the position of u. Consider the moment of
the stack generation of π, when u moved (by move or pop operation) to the output:

out = 〈α, u〉 and in = 〈β〉 and stack = 〈γ〉

, where β = v, v + 1, . . . , n for some v. Then

π = 〈α, u,mirror(β),mirror(γ)〉

The permutation
ρ = 〈α, v, u,mirror(γ), v + 1, . . . , n〉

is a 3-1-2 pattern avoiding permutation because ρ can be generated by stack, and ρ follows π according
to the lexicographic ordering since u < v. Moreover, all elements of γ are less than u and v is the smallest
in β implies that there is no 3-1-2 pattern avoiding permutation between π and ρ.

Using this observation we can develop O(n) running time algorithm which computes the next 3-1-2
avoiding permutation.
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Game

Problem author: Codeforces
Task preparation: B lażej Magnowski & Marek Sommer
Solution writeup: B lażej Magnowski

Lets try to find a way to determine whether the first player can win when the starting numbers are A
and B. In other words, we want to know if (A,B) is a winning state. Lets assume A > B. We have two
types of moves. The first type of move is to move to state (A mod B,B) and the second type of move is
to go to state (A−Bk, B) where k is a positive integer.

If one of the numbers is equal to zero, we know it is a winning state. So from now on, lets assume
that A > B > 0. We know we can make a move of the first type to a state (A mod B,B). If this is a
losing state then (A,B) is a winning state. Lets assume (A mod B,B) is a winning state. So the other
possible moves are the moves of the second type to a state (A−Bk, B). If A−Bk < B then A−Bk = (A
mod B) and we reached state (A mod B,B) which we know is a winning state. If A − Bk > B then
from state (A − Bk, B) by making a move of the first type we will reach state (A mod B,A) because
A− Bk ≡ A(mod B). So from now on none of the players will make a move of the first type because it
will lead their opponent to a winning state.

So we reduced our game to a subgame: we start from state (A,B) where A > B and we can only use
moves of the second type. Whoever moves to state (A mod B,B), loses. We can redefine this game. Let
X = bAB c. The possible moves are to subtract Bk from X where k is a non-negative integer. Whoever
will turn X to zero loses. If B is an odd number then Bk ≡ 1(mod 2) for any k so the value X mod 2
determines who wins. If B is an even number then lets look at the value of X mod (B + 1). We will
prove that if and only if this value is even then this is a winning state. Let’s assume that X mod (B+ 1)
is even. If X mod (B + 1) 6= 0 then we can subtract B0 = 1 from X and then (X − 1) mod (B + 1) will
be odd. If X mod (B + 1) = 0 then either X = 0 and that means that our opponent reached zero so we
won or X > B. In the second case we can subtract B1 = B from X and now (X −B) mod (B + 1) = 1.
Now let’s assume that X mod (B + 1) is odd. We can see that Bk ≡ (−1)k(mod (B + 1)) so no matter
what move we make, we can either decrease or increase the value of X mod (B+ 1) by 1. So if the value
of X mod (B + 1) is odd then no matter what move we will make then (X − Bk) mod (B + 1) will be
even. Also if the value of X mod (B+ 1) is even we either already won or we can make such a move that
(X − Bk) mod (B + 1) will be even. Therefore we proved that for given numbers X and B (B is even)
this state is a winning state if and only if X mod (B + 1) is even.

In short, to check if (A,B) is a winning state (A > B > 0) we have to find out if (A mod B,B) is a
winning state. After that in constant time we can tell if (A,B) is a winning state. There will be at most
O(logA) states to check, so the time complexity of determining if (A,B) is a winning state is O(logA).
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Posters

Problem author: Marek Sommer
Task preparation: Marek Sommer
Solution writeup: Marek Sommer

Subtask solution

The task statement specified that in 50% of testcases, there holds n,m ≤ 1000. This subtask can be
solved by considering each new poster separately. So let’s fix one of the new posters (and name it P ),
and let’s find the answer for that poster.

For each poster, which hangs on the wall, we can substitute it with its intersection with P . Those
operations cannot change the final answer, because the parts of posters, which lay outside the poster P ,
wouldn’t be counted anyway. After these operations, the answer for poster P is the total area covered
by the changed posters. From now on poster P is useless.

To compute the answer, we will use the sweep line algorithm. We will split each poster into two events
– the opening (left) and the closing (right) edge of the poster, and then we will process the events in
order from left to right.

 

1
open first

poster

2
open second

poster

3
close first

poster

4
close second

poster

After every event, we would like to know the length of the intersection of opened posters with vertical
line from sweeping. On the figures below, those intersections are marked with thick, dashed lines.
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If we would be able to compute this value, then we could easily find the area covered by the posters,
between two adjacent vertical lines. To find this area, we could simply multiply the length of the
intersection, by the distance between these lines.

We will build a segment tree, which will count the length of this intersection. The leafs in the segment
tree will represent the spaces between y coordinates, which belong to any poster. The other vertices will
represent the spaces, which belong to their sons.

In each vertex we should hold some information about the range it represents.
First of all, the length of a range should be known. It is easy to find such a value for every leaf, and

for other vertices we could compute it, by adding the lengths of both sons. Let’s call this value length.
The second value stored in a vertex is an indicator whether the whole range (which is represented by

this vertex) lies inside any opened rectangle. If this value is grater than zero, then it means that there is
such a rectangle, but if the value is equal to zero, than it does not necessarily mean that there is no such
rectangle, because this value could be grater than zero in any ancestor of that vertex.

The third value would be the one we are looking for – the length of the intersection of opened rectangles
with the sweeping line. We will call it a covered value.

Updating this values on our segment tree is easy. If we meet an opening (closing) edge of a rectangle,
then we should find the vertices, whose ranges cover the whole edge of that rectangle. Then we should
increase (decrease) the second value in each of these vertices, and then we should update the covered

value in every node on the path from each of those vertices to the root. If we try to update the covered

value in vertex v, than we should consider some cases:

• If v is a leaf:

– If second value in v is equal to 0, then the covered value is equal to 0.

– If second value in v is grater than 0, then the covered value is equal to the length of the range
represented by v.

• If v is not a leaf:
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– If second value in v is equal to 0, then the covered value is equal to the sum of covered values
of both sons.

– If second value in v is grater than 0, then the covered value is equal to the length of the range
represented by v.

This will not give us a correct covered value in every node, but the covered value in root will always be
valid, after applying these updates. We can also see that in next steps of our algorithm only the value
from root will be needed.

That way, each tree update after opening or closing a rectangle is done in logarithmic time (in size of
a tree). Thus we can find the total area covered by n rectangles in O(n log n) time. If we consider each
query separately, than we will get the O(mn log n) solution, which will give us 50% of points.

Final solution

To get 100% points, we need to slightly modify our segment tree. We would like to implement some
new functionalities, which would allow us to consider all of the queries at the same time.

In the following description we will use a term ”time” to name the x coordinates. For example, if we
say ”now”, we will think about the current position of the sweeping line.

In our modified tree we would like to hold the total sum of the area covered by rectangles since the
beginning of time till now (till the current sweep line position). Of course, we will hold such a value
in every vertex, and each vertex will hold information only about the area covered inside the horizontal
strip determined by the vertex range.

We would like to be able to read the sum of these areas on the given range. That would help us with
queries, because if we split each query into the opening and closing edge, than we should only read the
covered area from the beginning of time till the closing edge, and the covered area from the beginning of
time till the opening edge, and then subtract those values to get the final answer.

Let’s implement this total area feature. In a vertex v we should store two additional variables:
total area and last update. These values will mean that the last time we visited vertex v, was when
the sweeping line was at the position last update, and at that time, the total area (from the beginning
of time) was equal to total area.

Let’s say we now have time T , and we enter a vertex v. We know that the current covered area since
the beginning of time is equal to8:

v.total area + (T − v.last update) · v.covered

So, when we would like to enter any vertex in order to do something there (doesn’t matter if we met an
opening, or closing edge of a poster, or a query), we should increase the total area by the difference
from the last update to now, and then we should set last update value to T . We cannot leave this
update for later, because the covered value might change in this vertex and then we won’t be able to
find the difference so easily.

There’s still a small problem with this method. Let’s say that we update v at time t1, and v.covered
is equal to 0 (because there are no opened rectangles there). Then, at time t2, we open a rectangle, and
during that operation we update some vertices above v. The range represented by v is covered by this
rectangle, but we never reach v, because we stopped in any ancestor of v. Then we close this rectangle at
time t3, and we still don’t reach v. If we finally visit v at time t4 we would like to update v.total area,
but with the previous formula we would add (t4− t1) · 0, because the covered value is equal to 0. We see
that this value is not correct, because since t2, until t3, there was a rectangle covering v’s range. Thus,
we should add (t3 − t2) · v.length instead.

8 This value is not totally valid, but we would like it to work like that. We will correct it later.
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In each vertex we should hold an information about the total time, when the range was fully covered
since the last update. We can call this value fully covered. Let’s say that we enter the vertex v at time
T and we try to update it. We should increase the total area value by:

(T − v.last update− v.fully covered) · v.covered + v.fully covered · v.length

And then, we should set last update to T and fully covered to 0.
To maintain the fully covered value, we should also increase vertex’s both sons’ fully covered

value with v.fully covered, because if v was covered, then all of its descendants were also covered during
that time. If the ”second value” in v is grater than 0 we should also increase the sons’ fully covered

value by the time that passed from v.last update until T , without counting the v.fully covered time.
Such updating allows us to maintain the total covered area in every vertex. This leads us to an

O((n+m) log(n+m)) solution.
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Sorting

Problem author: JAG Practice Contest, Tokyo, 2011-11-06
Task preparation: Marek Sommer & B lażej Magnowski
Solution writeup: Marek Sommer

Let’s see what would happen if we would put the numbers A, A+ 1, . . ., B − 1, B into an array, and
then sort them lexicographically (sorting may be done just by converting each number into a string, and
then comparing two strings letter by letter). We may call this sorted sequence, a sequence S. Let n be
the length of the sequence S (and also the size of set {A,A+ 1, . . . , B − 1, B}).

If we would look at any ascending subsequence of S, and if we would consider a set containing
numbers from this subsequence, then this set would meet conditions stated in the task. That’s because
this subsequence is in lexicographical order (as a subsequence of a sequence with lexicographical order),
and also it is in numerical order (because it’s ascending).

From the other side, if we look at any subset of {A,A+ 1, . . . , B−1, B}, with the given property, and
we would sort it lexicographically, then it would form a subsequence of sequence S (because S contains
all elements of this subsequence and these elements are correctly ordered). Moreover, this sequence would
be ascending, because the set has the property, that lexicographical and numerical orders are the same.
Hence, this subset would be formed from an ascending subsequence of sequence S.

So, the number of subsets of {A,A+ 1, . . . , B − 1, B} with the given property is equal to the number
of ascending subsequences of sequence S.

To find the number of such subsequences we will use an algorithm very similar to the algorithm which
computes the longest ascending subsequence. We will use dynamic programming and for each element of
the sequence S, we will compute the number of ascending subsequences, ending exactly on this element.
Let’s call this value pi for i-th element. If we would be able to compute such values, then the answer
would be the sum of them (as each ascending subsequence should end in one of those elements), plus one
(we must add empty subsequence).

We will compute these values starting from the first element and ending on the last one. The value
p1 is always 1 (no matter what the first element is). If we try to compute the answer for the i-th element
(Si), then we must find the sum of all pj such that j < i and Sj < Si. This sum is the number of all
ascending subsequences, ending in i-th element, of length greater than one. Therefore we must increase
this sum by one to obtain the number of all subsequences ending in the i-th element.

At this point we already have an O(n2) solution. We can make it better by finding the sums of pj
more efficiently then by checking each possible j.

Let’s create an array of length n. First element of this array would represent A, second element would
represent A+ 1, and so on. After we compute a value pi, we should store it in the array in the element
representing Si. If we would like to compute the sum of pj with j < i and Sj < Si, then we should simply
calculate the sum of array’s elements from the one representing A to the one representing Si − 1. This
continuous part of the array contains pj values such that Sj < Si. The second constraint that j < i is
simply hold thanks to the order in which we compute the values pi (from i = 1, to i = n), so in the array
there are only pj such that j < i.

We reduced the problem to construction of an array, on which we could make two queries: setting one
element, and computing a sum of elements on a range of elements. This could be done with a segment
tree, or a Fenwick tree, giving us an O(n log n) algorithm to count the number of ascending subsequences.
The overall solution is a bit slower, because the lexicographical sorting was done in O(n log n logB) time.
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Mission

Problem author: Filip Hlásek & Michal ‘Mimino’ Danilák
Task preparation: Filip Hlásek & Michal ‘Mimino’ Danilák
Solution writeup: Filip Hlásek

Every path from B to E to H is equivalent to a pair of vertex disjoint paths – one from E to B and
the other from E to B. We can even add a new vertex X and join it by edges of the same length with
B and E respectively. Now the problem is to find two vertex disjoint paths from E to X.

We have reduced the task to a standard Minimum-cost flow problem9 10. Usually there are edges with
capacities, but in our case vertices have capacities equal to 1.

Vertex capacities

We must ensure that no vertex is visited more than once. We can do it by splitting every vertex into
two – one is called input and the other output. A directed edge (a, b) from the original network goes
from the output part of vertex a to the input part of vertex b in the new network. Additionally there is a
directed edge from the input part to the output part of a vertex and its capacity is equal to the vertex’s
capacity. The resulting network is equivalent to the given network (in sense of flow), but only edges have
capacities. The size of network was only linearly increased.

Min-cost max-flow

There are many approaches to this problem and all of them should be sufficient to solve the task. We
will present one of the easiest without the proof of correctness.

1. Find the shortest path from E to X using Bellman-Ford algorithm (or any other).

2. For every edge on the path, decrease it’s capacity by 1 and add an edge in the opposite direction
with capacity equal to 1 and opposite cost.

3. Find the shortest path from E to X using Bellman-Ford algorithm (or any other which can deal
with negative cost edges).

4. Sum of cost of the two paths is the required answer.

Overall complexity of the given algorithm is O(NM).

9http://en.wikipedia.org/wiki/Minimum-cost_flow_problem
10http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=minimumCostFlow1
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Newspapers

Problem author: B lażej Magnowski
Task preparation: B lażej Magnowski & Marek Sommer
Solution writeup: B lażej Magnowski

We will use binary search to solve this problem. So now, we want to know if for a given value S, there
exists in our tree a path of length at least K, such that the arithmetic average of its edges is equal to or
greater then S. Let’s say that such a path exists and its length is equal to N . Let’s denote the values of
the edges that lay on this path as V1, V2, . . . , VN . Let’s say that the value of the path is the sum of the
values of the edges. We know that:

V1 + V2 + . . .+ VN
N

> S | ·N

V1 + V2 + . . .+ VN > NS | −NS

(V1 − S) + (V2 − S) + . . .+ (VN − S) > 0

By subtracting S from the values of edges we were able to change our to problem to finding out if the
maximal value of the paths of length at least K is equal to or greater then zero. To solve this, we will use
the same method that was used in task Universities. We choose some vertex and find the maximal value
of the paths of length at least K which go through this vertex. After that, we erase that vertex from
our tree and continue our procedure in the subtrees. The vertex we choose for the given subtree can be
its centroid. Due to that, all the subtrees created from removing that vertex will be at least two times
smaller than the starting subtree. If we can find the maximal value of the paths of length at least K
which go through a vertex in a given subtree in linear time, the complexity of this part of the algorithm
will be O(N logN).

Now, we need to know how to find the maximal value of the paths of length at least K which go
through a given vertex. Let’s name the given vertex X and let’s make this tree rooted in X. Also let’s
call the path we are looking for the maximal path, and let’s call the paths that start in X tails. At first,
we need to compute the values of all the tails. The maximal path consist of at most two tails. Let’s take
any tail and assume that this path is one of the parts of the maximal path. Let’s say that L is the length
of this tail. Then, the other part of the maximal path will be a path of length at least K−L which starts
in X and goes into a different subtree then the first tail. Of course, the value of the other tail has to be
maximal possible. Let’s say the length of the longest tail is equal to M . We will construct an array P
and for every i from 0 to M , P [i] will hold two maximal values of tails of length i, which go into different
subtrees. With this array, for every i from 0 to M , we can compute two maximal values of tails of length
at least i, which go into different subtrees. Now, for every tail, we can assume that it is one of the tails
of the maximal path, and add to it the most fitting tail in constant time. So we will find the value of the
maximal path in linear time. Overall, the complexity of our solution is O(N logN logD) where D is the
maximal value of an edge, divided by the relative or absolute error that is accepted.
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An inexperienced slalomer

Problem author: Peter ‘Bob’ Fulla

Task preparation: Peter ‘Bob’ Fulla, Marián ‘Sysěl’ Horňák
Solution writeup: Peter ‘Bob’ Fulla

A gate has two endpoints; we will call the one with smaller y-coordinate the bottom endpoint and the
other one the top endpoint. In order to pass through each gate, Hubert must ski above every bottom
endpoint and below every top endpoint. He moves along a straight line, therefore we may replace this
requirement by “Hubert must ski above the upper convex hull of bottom endpoints and below the lower
convex hull of top endpoints”, which is equivalent to it.

If the intersection of the two convex hulls has a positive area, the answer will be Impossible, as no
straight line will separate the hulls. Otherwise, let us choose a point P belonging to one of the hulls and
a point Q belonging to the other hull such that their distance is minimal among all such pairs of points;
we will denote their distance by d. In other words, d equals the distance between the two convex hulls.
We claim that d is also the answer to our problem. Clearly, a disk of a diameter strictly greater than d
cannot pass through the line segment PQ, therefore its trajectory cannot separate the two convex hulls.
On the other hand, there is a valid trajectory for a disk of diameter exactly d: Its center will move along
the perpendicular bisector of the line segment PQ. One can show that this trajectory does not intersect
the two convex hulls (though it touches them) – if it did, there would be a pair of points P ′, Q′ with a
smaller distance than d.

The intersection of the two convex hulls has a positive area iff a vertex of one hull lies strictly inside
the other hull. We can check this by a simple sweep line algorithm. The distance of the convex hulls
can be computed as follows: Without loss of generality, we may assume that at least one of the points
P , Q is a vertex of the convex hull it belongs to; the other may also be a vertex or it may lie on a line
segment on the hull’s border. For any fixed vertex V on a convex hull, we can compute its distance to the
other hull H in time O(n) simply by iterating through all vertices and line segments of H and taking the
minimum of obtained distances. This would lead to a solution with time complexity O(n2). Realizing
that the sequence of distances from a fixed vertex V is at first decreasing and then increasing, we can find
its minimum using a ternary search in time O(log n). Another option is to use the two pointers technique
to find minima for all vertices V in time O(n). As we have to sort the gates at the beginning, the overall
time complexity is in both cases O(n log n).
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Tickets

Problem author: Gyula Horváth
Task preparation: Gyula Horváth
Solution writeup: Gyula Horváth

Solution 1: request to seat selection

Let C(x) is the set of candidate requests for seat x:

C(x) = {r : r.first ≤ x ≤ r.last and r is not satisfied yet}

Greedy choice:
Choose the request with least last value.

for (x=1;x<=N;){
insert r into C where r.first=x;
if (!C.empty(){

r=C.top; C.pop();
A[x]=r;

}
while (C.top().last==x) C.pop();

}

The running time of this algorithm is O(M logM) using priority queue for the implementation of the
greedy choice, where M is the number of the requests.

Solution 2: seat to request selection

Greedy choice:
Take the requests in decreasing order of their first value and if there is a free seat in between the request’s
first and last value, choose the largest. Let R[x] be the set of requests whose first seat is x. The operation
FindEmpty(a, b) returns the largest empty seat d, and if a ≤ d then mark d as not free.

int sol=0;
for(int x=n;x>0;x--){

for(Req y:R[x]){
int d=FindEmpty(x, y.last);
if(x<=d){

sol++;
A[d]=y.id;

}
}

}

Proof of correctness.
A problem instance is a par of sets (S,R), where S is the set of available seats and R is the set of requests.
A solution of a problem instance (S,R) is a partial function A : S → R, the seat assignment. Assume
that A is an optimal solution. We show that the optimal solution can be modified such that it begins
with the greedy choice. Let r0 be the greedy choice, i.e., r0.first is largest among the requests. For
the greedy solution Ag Ag[r0.last] = r0 holds. If A[r0.last] is not assigned, then set A[r0.last] = r0
and if for some s A[s] = r0 delete this assignment. Assume that A[r0.last] = r and r 6= r0. Therefore
r.first ≤ r0.first and r0.last ≤ r.last. If there is no seat s such that A[s] = r0 then set A[r0.last] = r0.
Otherwise change assignment by setting A[s] = r and A[r0.last] = r0. The modified optimal solution
includes the greedy choice. Denote the modified assignment by A.
Consider the reduced problem instance (S,R) where S = S − {r0.last} and R = R− {r0}. The reduced
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assignment A : S → R is an optimal solution of the reduces problem instance, therefore A is an optimal
solution of (S,R)

Implementation of the FindEmpty operation by Union-Find

N0 1

Consider the disjoint intervals of the set of seats, such that the least element is a free seat and this is the
only free seat in the interval.

The sets of request R[x] can be represented by list, therefore the creation of the sets R[x] requires
Θ(M) time.
The running time of this algorithm is O(M α(N,M)).
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